Question 22

A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m^{2}.

(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

Answer

(a) Diameter of the sphere, d = 2.4 m

Radius of the sphere, r = 1.2 m

Surface charge density, = 80.0 μC/m2 = 80 × 10−6 C/m2

Total charge on the surface of the sphere,

Q = Charge density × Surface area

=

= 80 × 10^{−6} × 4 × 3.14 × (1.2)^{2}

= 1.447 × 10^{−3} C

Therefore, the charge on the sphere is 1.447 × 10^{−3} C.

(b) Total electric flux () leaving out the surface of a sphere containing net charge Q is given by the relation,

Where, ∈0 = Permittivity of free space

∈_{0} = 8.854 × 10^{−12} N^{−1}C^{2} m^{−2}

Q = 1.447 × 10^{−3} C

= 1.63 × 10^{8} N C^{−1} m^{2}

Therefore, the total electric flux leaving the surface of the sphere is 1.63 × 10^{8} N C^{−1} m^{2}.

- Q:- A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?

(b) What is the net power consumed over a full cycle? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:- The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10
^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

">The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?

- Q:- (a) Consider an arbitrary electrostatic field configuration. A small test charge is placed at a null point (i.e., where E = 0) of the configuration. Show that the equilibrium of the test charge is necessarily unstable.
(b) Verify this result for the simple configuration of two charges of the same magnitude and sign placed a certain distance apart.

">(a) Consider an arbitrary electrostatic field configuration. A small test charge is placed at a null point (i.e., where E = 0) of the configuration. Show that the equilibrium of the test charge is necessarily unstable.

(b) Verify this result for the simple configuration of two charges of the same magnitude and sign placed a certain distance apart.

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 105 NC

^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A 4 µF capacitor is charged by a 200 V supply. It is then disconnected from the supply, and is connected to another uncharged 2 µF capacitor. How much electrostatic energy of the first capacitor is lost in the form of heat and electromagnetic radiation?

- Q:-
Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 × 10

^{−22}C/m^{2}. What is E:(a) in the outer region of the first plate,

(b) in the outer region of the second plate, and

(c) between the plates?

- Q:- The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.
(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

">The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?

Steven
2019-11-24 07:32:59

Thank you it was really useful

- NCERT Chapter

Copyright © 2013-14 saralstudy.com. All Rights Reserved. Site Powered by Kochan Group