This page offers a step-by-step solution to the specific question **NCERT Class 11th Physics - Motion in a straight Line | read each statement below carefully and state with Answer ** from NCERT Class 11th Physics, Chapter Motion in a straight Line.

Question 11

Read each statement below carefully and state with reasons and examples, if it is true or false; A particle in one-dimensional motion

(a) with zero speed at an instant may have non-zero acceleration at that instant

(b) with zero speed may have non-zero velocity,

(c) with constant speed must have zero acceleration,

(d) with positive value of acceleration mustbe speeding up.

Answer

(a) True. When an object is thrown vertically up in the air, its speed becomes zero at maximum height. However, it has acceleration equal to the acceleration due to gravity (g) that acts in the downward direction at that point.

(b) False. Speed is the magnitude of velocity. When speed is zero, the magnitude of velocity along with the velocity is zero.

(c) True. A car moving on a straight highway with constant speed will have constant velocity. Since acceleration is defined as the rate of change of velocity, acceleration of the car is also zero.

(d) False. This statement is false in the situation when acceleration is positive and velocity is negative at the instant time taken as origin. Then, for all the time before velocity becomes zero, there is slowing down of the particle. Such a case happens when a particle is projected upwards.

This statement is true when both velocity and acceleration are positive, at the instant time taken as origin. Such a case happens when a particle is moving with positive acceleration or falling vertically downwards from a height.

- Q:- In which of the following examples of motion, can the body be considered approximately a point object:

(a) a railway carriage moving without jerks between two stations.

(b) a monkey sitting on top of a man cycling smoothly on a circular track.

(c) a spinning cricket ball that turns sharply on hitting the ground.

(d) a tumbling beaker that has slipped off the edge of a table. - Q:-
A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1 m long and requires 1 s. Plot the x-t graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 13 m away from the start.

- Q:-
A woman starts from her home at 9.00 am, walks with a speed of 5 km h

^{-1}on a straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and returns home by an auto with a speed of 25 km h^{-1}. Choose suitable scales and plot the x-t graph of her motion. - Q:-
A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time graph of its motion between t = 0 to 12 s.

- Q:-
A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km h

^{ –1}. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km h^{–1}. What is thea) magnitude of average velocity, and

b) average speed of the man over the interval of time (i) 0 to 30 min, (ii) 0 to 50 min, (iii) 0 to 40 min?

[Note: You will appreciate from this exercise why it is better to define average speed as total path length divided by time, and not as magnitude of average velocity. You would not like to tell the tired man on his return home that his average speed was zero!]

- Q:-
The position-time (x-t) graphs for two children A and B returning from their school O to their homes P and Q respectively are shown in Fig. 3.19. Choose the correct entries in the brackets below;

(a) (A/B) lives closer to the school than (B/A)

(b) (A/B) starts from the school earlier than (B/A)

(c) (A/B) walks faster than (B/A)

(d) A and B reach home at the (same/different) time

(e) (A/B) overtakes (B/A) on the road (once/twice).

- Q:-
A car moving along a straight highway with a speed of 126 km h

^{–1}is brought to a stop within a distance of 200 m. What is the retardation of the car (assumed uniform), and how long does it take for the car to stop? - Q:-
A player throws a ball upwards with an initial speed of 29.4 m s

^{–1}. What is the direction of acceleration during the upward motion of the ball? What are the velocity and acceleration of the ball at the highest point of its motion?Choose the x = 0 m and t = 0 s to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of x-axis, and give the signs of position, velocity and acceleration of the ball during its upward, and downward motion. To what height does the ball rise and after how long does the ball return to the player’s hands? (Take g = 9.8 m s

^{–2}and neglect air resistance). - Q:-
Explain clearly, with examples, the distinction between:

a) magnitude of displacement (sometimes called distance) over an interval of time, and the total length of path covered by a particle over the same interval;

b) magnitude of average velocity over an interval of time, and the average speed over the same interval. [Average speed of a particle over an interval of time is defined as the total path length divided by the time interval]. Show in both (a) and (b) that the second quantity is either greater than or equal to the first.

When is the equality sign true? [For simplicity, consider one-dimensional motion only].

- Q:-
Two towns A and B are connected by a regular bus service with a bus leaving in either direction every T minutes. A man cycling with a speed of 20 km h

^{–1}in the direction A to B notices that a bus goes past him every 18 min in the direction of his motion, and every 6 min in the opposite direction. What is the period T of the bus service and with what speed (assumed constant) do the buses ply on the road?

- Q:-
Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?

- Q:-
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:

(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.

(b) work done by gravitational force in the above case,

(c) work done by friction on a body sliding down an inclined plane,

(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,

(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.

- Q:- State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement, angular velocity.
- Q:- Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed

(b) a cork of mass 10 g floating on water

(c) a kite skillfully held stationary in the sky

(d) a car moving with a constant velocity of 30 km/h on a rough road

(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields. - Q:-
A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 x 10

^{4}J/g? - Q:-
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.

- Q:- Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie inside the body?
- Q:- Answer the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means? (b) An astronaut inside a small space ship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity? (c) If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Suns pull is greater than the moons pull. (You can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moons pull is greater than the tidal effect of sun. Why?
- Q:- Explain why (a) The blood pressure in humans is greater at the feet than at the brain (b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km (c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area.
- Q:- Which of the following examples represent periodic motion? (a) A swimmer completing one (return) trip from one bank of a river to the other and back. (b) A freely suspended bar magnet displaced from its N-S direction and released. (c) A hydrogen molecule rotating about its center of mass. (d) An arrow released from a bow.

- Q:-
The nearest star to our solar system is 4.29 light years away. How much is this distance in terms of parsecs? How much parallax would this star (named Alpha Centauri) show when viewed from two locations of the Earth six months apart in its orbit around the Sun?

- Q:-
Read each statement below carefully and state, with reasons and examples, if it is true or false:

A scalar quantity is one that

(a) is conserved in a process

(b) can never take negative values

(c) must be dimensionless

(d) does not vary from one point to another in space

(e) has the same value for observers with different orientations of axes

- Q:-
Read each statement below carefully and state, with reasons, if it is true or false:

(a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre

(b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point

(c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector

- Q:-
Figures 14.29 correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.

Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.

- Q:-
Write in about 1000 words a fiction piece based on your speculation on the science and technology of the twenty-second century.

- Q:-
You have learnt that a travelling wave in one dimension is represented by a function y = f (x, t) where x and t must appear in the combination x - v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:

(a) ( x - v t )

^{2}(b) log [ x + vt / x

_{0}](c) 1 / (x + vt)

- Q:-
Can you associate vectors with (a) the length of a wire bent into a loop, (b) a plane area, (c) a sphere? Explain.

- Q:-
A block of mass 15 kg is placed on a long trolley. The coefficient of static friction between the block and the trolley is 0.18. The trolley accelerates from rest with 0.5 ms

^{-2}for 20 s and then moves with uniform velocity. Discuss the motion of the block as viewed by (a) a stationary observer on the ground, (b) an observer moving with the trolley. - Q:-
Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?

- Q:- Which of the following examples represent periodic motion? (a) A swimmer completing one (return) trip from one bank of a river to the other and back. (b) A freely suspended bar magnet displaced from its N-S direction and released. (c) A hydrogen molecule rotating about its center of mass. (d) An arrow released from a bow.

- All Chapters Of Class 11 Physics

- All Subjects Of Class 11