NCERT Solutions for Class 11 physics covers all the questions given in the NCERT book. You can study and download these question and their solutions free from this page. These solutions are solved by our specialists at SaralStudy.com, that will assist all the students of respective boards, including CBSE, who follows NCERT; with tackling all the questions easily. We give chapter wise complete solutions for your straightforwardness.
- Chapter 1 Physical World
- Chapter 2 Unit and measurment
- Chapter 3 Motion in a straight Line
- Chapter 4 Motion in a Plane
- Chapter 5 Laws of Motion
- Chapter 6 Work Energy and Power
- Chapter 7 System of Particles and Rotational Motion
- Chapter 8 Gravitation
- Chapter 9 Mechanical Properties of Solids
- Chapter 10 Mechanical Properties of Fluids
- Chapter 11 Thermal properties of Matter
- Chapter 12 Thermodynamics
- Chapter 13 Kinetic Theory
- Chapter 14 Oscillations
- Chapter 15 Waves
Popular Questions of Class 11 Physics
- Q:-
State the number of significant figures in the following:
(a) 0.007 m2
(b) 2.64 x 1024 kg
(c) 0.2370 g cm-3
(d) 6.320 J
(e) 6.032 N m-2
(f) 0.0006032 m2
- Q:-
A physical quantity P is related to four observables a, b, c and d as follows :
The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%, respectively. What is the percentage error in the quantity P ? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result ?
- Q:-
Fill in the blanks by suitable conversion of units:
(a) 1 kg m2s–2= ....g cm2 s–2
(b) 1 m =..... ly
(c) 3.0 m s–2=.... km h–2
(d) G = 6.67 × 10–11 N m2 (kg)–2=.... (cm)3s–2 g–1.
- Q:-
Rain is falling vertically with a speed of 30 m s–1. A woman rides a bicycle with a speed of 10 m s–1 in the north to south direction. What is the direction in which she should hold her umbrella?
- Q:- Give the magnitude and direction of the net force acting on
(a) a drop of rain falling down with a constant speed
(b) a cork of mass 10 g floating on water
(c) a kite skillfully held stationary in the sky
(d) a car moving with a constant velocity of 30 km/h on a rough road
(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields. - Q:-
The mass of a box measured by a grocer's balance is 2.300 kg. Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is
(a) the total mass of the box,
(b) the difference in the masses of the pieces to correct significant figures?
- Q:-
On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.
- Q:-
What amount of heat must be supplied to 2.0 x 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol-1 K-1.)
- Q:- In which of the following examples of motion, can the body be considered approximately a point object:
(a) a railway carriage moving without jerks between two stations.
(b) a monkey sitting on top of a man cycling smoothly on a circular track.
(c) a spinning cricket ball that turns sharply on hitting the ground.
(d) a tumbling beaker that has slipped off the edge of a table. - Q:-
A transverse harmonic wave on a string is described by
y(x,t) = 3.0 sin [36t + 0.018x + π /4]
Where x and y are in cm and t in s. The positive direction of x is from left to right.
(a) Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation?
(b) What are its amplitude and frequency?
(c) What is the initial phase at the origin?
(d) What is the least distance between two successive crests in the wave?
Recently Viewed Questions of Class 11 Physics
- Q:-
The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding 107 K, and its outer surface at a temperature of about 6000 K. At these high temperatures, no substance remains in a solid or liquid phase. In what range do you expect the mass density of the Sun to be, in the range of densities of solids and liquids or gases? Check if your guess is correct from the following data: mass of the Sun = 2.0 x 1030 kg, radius of the Sun = 7.0 x 108 m.
- Q:- Explain why (or how):
(a) In a sound wave, a displacement node is a pressure antinode and vice versa,
(b) Bats can ascertain distances, directions, nature, and sizes of the obstacles without any eyes,
(c) A violin note and sitar note may have the same frequency, yet we can distinguish between the two notes,
(d) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases, and
(e) The shape of a pulse gets distorted during propagation in a dispersive medium. - Q:-
A train runs along an unbanked circular track of radius 30 m at a speed of 54 km/h. The mass of the train is 106 kg. What provides the centripetal force required for this purpose - The engine or the rails? What is the angle of banking required to prevent wearing out of the rail?
- Q:-
Suggest a suitable physical situation for each of the following graphs (Fig 3.22):
(a)
(Figure 3.22)
- Q:-
A stone tied to the end of a string 80 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 s, what is the magnitude and direction of acceleration of the stone?
- Q:-
Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?
- Q:-
A vector has magnitude and direction. Does it have a location in space? Can it vary with time? Will two equal vectors a and b at different locations in space necessarily have identical physical effects? Give examples in support of your answer.
- Q:-
Explain clearly, with examples, the distinction between:
a) magnitude of displacement (sometimes called distance) over an interval of time, and the total length of path covered by a particle over the same interval;
b) magnitude of average velocity over an interval of time, and the average speed over the same interval. [Average speed of a particle over an interval of time is defined as the total path length divided by the time interval]. Show in both (a) and (b) that the second quantity is either greater than or equal to the first.
When is the equality sign true? [For simplicity, consider one-dimensional motion only].
- Q:-
Toricelli's barometer used mercury. Pascal duplicated it using French wine of density 984 kg m-3. Determine the height of the wine column for normal atmospheric pressure.
- Q:-
The principle of ‘parallax’ in section 2.3.1 is used in the determination of distances of very distant stars. The baseline AB is the line joining the Earth’s two locations six months apart in its orbit around the Sun. That is, the baseline is about the diameter of the Earth’s orbit ≈ 3 × 1011m. However, even the nearest stars are so distant that with such a long baseline, they show parallax only of the order of 1” (second) of arc or so. A parsec is a convenient unit of length on the astronomical scale. It is the distance of an object that will show a parallax of 1” (second) of arc from opposite ends of a baseline equal to the distance from the Earth to the Sun. How much is a parsec in terms of metres ?