Write the resonance structures for SO3, NO2 and .
Resonance is defined as the phenomenon as a result of which a molecule can be expressed in different forms, none of which can explain all the properties of the molecules. The actual structure of the molecule is called resonance hybrid.
The resonating structures must have same position of the atoms, they must have same number of paired & unpaired electrons, they should have nearlt same energy. The resonance structures are:
(a) SO3:
(b) NO2
(c)
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Describe the change in hybridisation (if any) of the Al atom in the following reaction.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
What do you understand by the term “non-stoichiometric hydrides”? Do you expect this type of the hydrides to be formed by alkali metals? Justify your answer.
The reaction:
CH3CH2I + KOH(aq) → CH3CH2OH + KI
is classified as :
(a) electrophilic substitution
(b) nucleophilic substitution
(c) elimination
(d) addition
Calculate the entropy change in surroundings when 1.00 mol of H2O(l) is formed under standard conditions. ΔfH0 = –286 kJ mol–1.
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
CH3OH (l) + 3/2 O2(g) → CO2(g) + 2H2O(l) ; ΔrH0 = –726 kJ mol–1
C(g) + O2(g) → CO2(g) ; ΔcH0 = –393 kJ mol–1
H2(g) + 1/2 O2(g) → H2O(l) ; ΔfH0 = –286 kJ mol–1.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).
Beryllium and magnesium do not give colour to flame whereas other alkaline earth metals do so. Why?
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
How do you expect the metallic hydrides to be useful for hydrogen storage? Explain.
Really, the way of telling the answer is very nice
Nice
Very useful and nice answer
Very disscasting website Very poor results I am not satisfied
this is really good