Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:
2NO (g) + Br2 (g) ↔ 2NOBr (g)
When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br2 .
The given reaction is:
2NO (g) + Br2 (g) ↔ 2NOBr (g)
2 mol 1 mol 2 mol
Now, 2 mol of NOBr are formed from 2 mol of NO. Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO.
Again, 2 mol of NOBr are formed from 1 mol of Br.
Therefore, 0.0518 mol of NOBr are formed from 0.0518/2 mol of Br, or 0.0259 mol of NO.
The amount of NO and Br present initially is as follows:
[NO] = 0.087 mol [Br2] = 0.0437 mol
Therefore, the amount of NO present at equilibrium is: [NO] = 0.087 - 0.0518 = 0.0352 mol
And, the amount of Br present at equilibrium is: [Br2] = 0.0437-0.0259 = 0.0178 mol
Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl
(b) 0.005 M NaOH
(c) 0.002 M HBr
(d) 0.002 M KOH
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
The ionization constant of acetic acid is 1.74 x 10-5. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.
Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
CH4 (g) + H2O (g) ↔ CO (g) + 3H2 (g)
(a) Write as expression for Kp for the above reaction.
(b) How will the values of Kp and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst ?
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl5 is 8.3 ×10-3. If decomposition is depicted as,
PCl5 (g) ↔ PCl3 (g) + Cl2 (g) ΔrH0 = 124.0 kJ mol–1
(a) write an expression for Kc for the reaction.
(b) what is the value of Kc for the reverse reaction at the same temperature ?
(c) what would be the effect on Kc if (i) more PCl5 is added (ii) pressure is increased (iii) the temperature is increased ?
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Ionic product of water at 310 K is 2.7 x 10-14. What is the pH of neutral water at this temperature?
Reaction between N2 and O2– takes place as follows:
2N2 (g) + O2 (g) ↔ 2N2O (g)
If a mixture of 0.482 mol N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10–37, determine the composition of equilibrium mixture.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
Will CCl4 give white precipitate of AgCl on heating it with silver nitrate? Give reason for your answer.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Why are potassium and cesium, rather than lithium used in photoelectric cells?
Write the favourable factors for the formation of ionic bond.
Give one method for industrial preparation and one for laboratory preparation of CO and CO2 each.
:(i) Write the electronic configurations of the following ions: (a) H– (b) Na+ (c) O2–(d) F–
(ii) What are the atomic numbers of elements whose outermost electrons are represented by (a) 3s1 (b) 2p3 and (c) 3p5?
(iii) Which atoms are indicated by the following configurations?
(a) [He] 2s1 (b) [Ne] 3s2 3p3 (c) [Ar] 4s2 3d1.
At 0°C, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
Enthalpy of combustion of carbon to CO2 is -393.5 kJ mol-1. Calculate the heat released upon formation of 35.2 g of CO2 from carbon and dioxygen gas.