For an isolated system, ΔU = 0, what will be ΔS?
ΔS will be positive i.e., greater than zero
Since ΔU= 0, ΔS will be positive and the reaction will be spontaneous.
In a process, 701 J of heat is absorbed by a system and 394 J ofwork is done by the system. What is the change in internal energy for the process?
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
For the reaction at 298 K,
2A + B → C
ΔH = 400 kJ mol-1and ΔS = 0.2 kJ K-1mol-1
At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range?
A reaction, A + B → C + D + q is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(iv) possible at any temperature
The equilibrium constant for a reaction is 10. What will be the value of ΔG0 ? R = 8.314 JK–1 mol–1, T = 300 K.
The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, –890.3 kJ mol–1 , –393.5 kJ mol–1, and –285.8 kJ mol–1 respectively. Enthalpy of formation of CH4(g) will be
(i) –74.8 kJ mol–1
(ii) –52.27 kJ mol–1
(iii) +74.8 kJ mol–1
(iv) +52.26 kJ mol–1
Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to ice at -10.0°C. ΔfusH = 6.03 kJ mol-1 at 0°C.
Cp[H2O(l)] = 75.3 J mol-1 K-1
Cp[H2O(s)] = 36.8 J mol-1 K-1
Calculate the enthalpy change for the process
CCl4(g) → C(g) + 4 Cl(g)
and calculate bond enthalpy of C – Cl in CCl4(g).
ΔvapH0(CCl4) = 30.5 kJ mol–1.
ΔfH0 (CCl4) = –135.5 kJ mol–1.
ΔaH0 (C) = 715.0 kJ mol–1 , where ΔaH0 is enthalpy of atomisation
ΔaH0 (Cl2) = 242 kJ mol–1
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Enthalpies of formation of CO(g), CO2(g), N2O(g) and N2O4(g) are –110, – 393, 81 and 9.7 kJ mol–1 respectively. Find the value of ΔrH for the reaction:
N2O4(g) + 3CO(g) → N2O(g) + 3CO2(g)
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Write IUPAC names of the products obtained by the ozonolysis of the following compounds:
(i) Pent-2-ene
(ii) 3,4-Dimethyl-hept-3-ene
(iii) 2-Ethylbut-1-ene
(iv) 1-Phenylbut-1-ene
Write the names of isotopes of hydrogen. What is the mass ratio of these isotopes?
Write bond line formulas for : Isopropyl alcohol, 2,3-Dimethyl butanal, Heptan-4- one.
What is the total number of sigma and pi bonds in the following molecules?
(a) C2H2 (b) C2H4
What are the necessary conditions for any system to be aromatic?
The value of Kc for the reaction
3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C.
If the equilibrium concentration of O2 in air at 25°C is 1.6 ×10–2, what is the concentration of O3?
Which of the following carbocation is most stable ?
Predict which of the following reaction will have appreciable concentration of reactants and products:
a) Cl2 (g) ↔ 2Cl (g) Kc = 5 ×10–39
b) Cl2 (g) + 2NO (g) ↔ 2NOCl (g) Kc = 3.7 × 108
c) Cl2 (g) + 2NO2 (g) ↔ 2NO2Cl (g) Kc = 1.8
Arrange the following
(i) CaH2, BeH2 and TiH2 in order of increasing electrical conductance.
(ii) LiH, NaH and CsH in order of increasing ionic character.
(iii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy.
(iv) NaH, MgH2 and H2O in order of increasing reducing property.
Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) C6H5OH
(b) C6H5NO2
(c) CH3CH=CHCHO
(d) C6H5–CHO
(e) C6 H5 - C+H2
(f) CH3CH = CHC+H2