Two objects, each of mass 1.5 kg, are moving in the same straight line but in opposite directions. The velocity of each object is 2.5 m s-1 before the collision during which they stick together. What will be the velocity of the combined object after collision?
Mass of first objects, m1 = 1.5 kg
Mass of second object, m2 = 1.5 kg
Velocity of m1 before collision, v1 = 2.5 m/s
Velocity of m2, moving in opposite direction before collision, v2 = −2.5 m/s
(Negative sign arises because mass m2 is moving in an opposite direction)
We know that
Total momentum before collision = Total momentum after collision
m1v1 + m2 v2 = (m1 + m2) v
1.5(2.5) + 1.5 (−2.5) = (1.5 + 1.5) v
3.75 − 3.75 = 3 v
v = 0 / 3 = 0
Hence, the velocity of the combined object after collision is 0 m/s.
Abdul, while driving to school, computes the average speed for his trip to be 20 km h-1. On his return trip along the same route, there is less traffic and the average speed is 40 km h-1. What is the average speed for Abdul’s trip?
An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half-way down.
A driver of a car travelling at 52 km h-1 applies the brakes and accelerates uniformly in the opposite direction. The car stops in 5 s. Another driver going at 3 km h-1 in another car applies his brakes slowly and stops in 10 s. On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two cars travelled farther after the brakes were applied?
Fig 8.11 shows the distance-time graph of three objects A,B and C. Study the graph and answer the following questions:
Fig. 8.11
(a) Which of the three is travelling the fastest?
(b) Are all three ever at the same point on the road?
(c) How far has C travelled when B passes A?
(d) How far has B travelled by the time it passes C?
Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why?
Two objects of masses 100 g and 200 g are moving along the same line and direction with velocities of 2 m s-1 and 1 m s-1, respectively. They collide and after the collision, the first object moves at a velocity of 1.67 m s-1. Determine the velocity of the second object.
How do poriferan animals differ from coelenterate animals?
The speed-time graph for a car is shown is Fig. 8.12.
Fig. 8.12
(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car?
How are sol, solution and suspension different from each other?
What happens to the force between two objects, if
(i) the mass of one object is doubled?
(ii) the distance between the objects is doubled and tripled?
(iii) the masses of both objects are doubled?
Which of the following will show “Tyndall effect”?
(a) Salt solution
(b) Milk
(c) Copper sulphate solution
(d) Starch solution.
Which organelle is known as the powerhouse of the cell? Why?
A farmer moves along the boundary of a square field of side 10 m in 40 s. What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds?
Where is apical meristem found?
What are polyatomic ions? Give examples.
Explain how bats use ultrasound to catch a prey.
How are sol, solution and suspension different from each other?
Define 1 J of work.
What is the mass of:
(a) 0.2 mole of oxygen atoms?
(b) 0.5 mole of water molecules?
A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case?