Complete the following table.
Atomic Number |
Mass Number |
Number of Neutrons |
Number of Protons |
Number of Electrons |
Name of the Atomic Species |
9 | - | 10 | - | - | - |
16 | 32 | - | - | - | Sulphur |
- | 24 | - | 12 | - | - |
- | 2 | - | 1 | - | - |
- | 1 | 0 | 1 | 0 | - |
Atomic Number |
Mass Number |
Number of Neutrons |
Number of Protons |
Number of Electrons |
Name of the Atomic Species |
---|---|---|---|---|---|
9 | 19 | 10 | 9 | 9 | Fluorine |
16 | 32 | 16 | 16 | 16 | Sulphur |
12 | 24 | 12 | 12 | 12 | Magnesium |
1 | 2 | 1 | 1 | 1 | Hydrogen Deuterium |
1 | 1 | 0 | 1 | 0 | Hydrogen |
If number of electrons in an atom is 8 and number of protons is also 8, then (i) what is the atomic number of the atom? and (ii) what is the charge on the atom?
With the help of Table 4.1, find out the mass number of oxygen and sulphur atom.
For the symbol H,D and T tabulate three sub-atomic particles found in each of them.
Explain with examples (i) Atomic number, (ii) Mass number, (iii) Isotopes and iv) Isobars. Give any two uses of isotopes.
Define valency by taking examples of silicon and oxygen.
The average atomic mass of a sample of an element X is 16.2 u. What are the percentages of isotopes 168 X and 188 X in the sample?
Describe Bohr’s model of the atom.
Draw a sketch of Bohr’s model of an atom with three shells.
Write the electronic configuration of any one pair of isotopes and isobars.
Na+ has completely filled K and L shells. Explain.
Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-rupees coin and a one-rupee coin?
State the universal law of gravitation.
Which of the following are matter?
Chair, air, love, smell, hate, almonds, thought, cold, cold-drink, smell of perfume.
A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case?
What is meant by a pure substance?
How does the sound produced by a vibrating object in a medium reach your ear?
In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium observations are in agreement with the law of conservation of mass.
sodium carbonate + ethanoic acid → sodium ethanoate + carbon dioxide + water
State any two conditions essential for good health.
How is our atmosphere different from the atmospheres on Venus and Mars?
Who discovered cells, and how?
A submarine emits a sonar pulse, which returns from an underwater cliff in 1.02 s. If the speed of sound in salt water is 1531 m/s, how far away is the cliff?
The mass per unit volume of a substance is called density. (density = mass/volume). Arrange the following in order of increasing density – air, exhaust from chimneys, honey, water, chalk, cotton and iron.
Two children are at opposite ends of an aluminium rod. One strikes the end of the rod with a stone. Find the ratio of times taken by the sound wave in air and in aluminium to reach the second child.
Describe with the help of a diagram, how compressions and rarefactions are produced in air near a source of sound.
What is pasturage and how is it related to honey production?
Why are manure and fertilizers used in fields?
Two objects, each of mass 1.5 kg, are moving in the same straight line but in opposite directions. The velocity of each object is 2.5 m s-1 before the collision during which they stick together. What will be the velocity of the combined object after collision?
Define 1 J of work.
The speed-time graph for a car is shown is Fig. 8.12.
Fig. 8.12
(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car?
Fig 8.11 shows the distance-time graph of three objects A,B and C. Study the graph and answer the following questions:
Fig. 8.11
(a) Which of the three is travelling the fastest?
(b) Are all three ever at the same point on the road?
(c) How far has C travelled when B passes A?
(d) How far has B travelled by the time it passes C?