The following data are obtained when dinitrogen and dioxygen react together to form different compounds:
Mass of dinitrogen Mass of dioxygen
(i) 14 g 16 g
(ii) 14 g 32 g
(iii) 28 g 32 g
(iv) 28 g 80 g
(a) Which law of chemical combination is obeyed by the above experimental data?Give its statement.
(b) Fill in the blanks in the following conversions:
(i) 1 km = ...................... mm = ...................... pm
(ii) 1 mg = ...................... kg = ...................... ng
(iii) 1 mL = ...................... L = ...................... dm3
Let us fix 14 parts by weight of nitrogen as fixed weight.
Now let us calculate the weights of oxygen which combine with 14 parts by weight of nitrogen
Sno |
No of parts by weight of nitrogen |
No of parts by weight of oxygen |
14 parts of nitrogen as fixed weight |
No of parts by weight of oxygen which combine with 14 parts by weight of nitrogen |
1 |
14g |
16g |
14g |
16 |
2 |
14g |
32g |
14g |
32 |
3 |
28g |
32g |
14g |
32 |
4 |
28g |
80g |
14g |
80 |
(a) If we fix the mass of dinitrogen at 14 g, then the masses of dioxygen that will combine with the fixed mass of dinitrogen are 16 g, 32 g, 32 g, and 80 g.
The masses of dioxygen bear a whole number ratio of 1:2:2:5. Hence, the given experimental data obeys the law of multiple proportions.
This law was given by Dalton in 1804. The law states that if two elements combine to form 2 or more compound, then the weight of one element which combines a fixed weight of other element in these compounds,bears a simple whole number ratio by weight.
(b) (i) We know 1km=1000m
Or 1m = 1000 mm
Therefore 1km = 1000x 1000mm= 106 mm
1 km = 1 km ×
1 km = 1015 pm
Hence, 1 km = 106 mm = 1015 pm
(ii) We know 1kg = 1000mg
Or 1000mg= 1kg
Or 1mg= 1/1000* 1= 0.01 kg
1 mg = 1 mg ×
⇒ 1 mg = 106 ng
1 mg = 10–6 kg = 106 ng
(iii) We know 1000 ml=l L
Or 1ml=1/1000*1= 0.01L
1 mL = 1 cm3 = 1 cm3
⇒ 1 mL = 10–3 dm3
1 mL = 10–3 L = 10–3 dm3
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Chlorine is prepared in the laboratory by treating manganese dioxide (MnO2) with aqueous hydrochloric acid according to the reaction
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
How many grams of HCl react with 5.0 g of manganese dioxide?
Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction,
CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?
Calculate the mass of sodium acetate (CH3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol–1
A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
How many significant figures are present in the following?
(i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
In Rutherford’s experiment, generally the thin foil of heavy atoms, like gold, platinum etc. have been used to be bombarded by the α-particles. If the thin foil of light atoms like aluminium etc. is used, what difference would be observed from the above results?
If the position of the electron is measured within an accuracy of + 0.002 nm, calculate the uncertainty in the momentum of the electron. Suppose the momentum of the electron is h/4πm × 0.05 nm, is there any problem in defining this value.
Comment on each of the following observations:
(a) The mobilities of the alkali metal ions in aqueous solution are Li+ < Na+ < K+ < Rb+ < Cs+
(b) Lithium is the only alkali metal to form a nitride directly.
(c) E° for M2+(aq) (where M = Ca, Sr or Ba) is nearly constant.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
(a) How many sub-shells are associated with n = 4?
(b) How many electrons will be present in the sub-shells having ms value of –1/2 for n = 4?
Which element do you think would have been named by
(i) Lawrence Berkeley Laboratory
(ii) Seaborg’s group?
Discuss the pattern of variation in the oxidation states of
(i) B to Tl and (ii) C to Pb.
The equilibrium constant for the following reaction is 1.6 ×105 at 1024K
H2(g) + Br2(g) ↔ 2HBr(g)
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024K.
Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
(d) 2K(s) + F2(g) → 2K+F– (s)
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
For an isolated system, ΔU = 0, what will be ΔS?
Thx
No it is given in the question itself that the ratio of dioxygrn is 16, 32 , 32, 80 so the whole no ratio with dinitrogen is 1:2:2:5
If we fix the mass of dinitrogen at 14 g, then masses of dioxygen will be 16 g, 32 g, 16 g, & 40 g. Then the ratio becomes 1:2:1:2.5. Is there any mismatch or i have understood wrong. Kindly clarify With regards Krishnaraj