The longest wavelength doublet absorption transition is observed at 589 and 589.6 nm. Calculate the frequency of each transition and energy difference between two excited states.
λ1 = 589 nm = 5.89X10-9m
therefore v1=c/ λ1 = 3x108/589x10-9 = 5.093x1014/sec
λ2 = 589.6nm = 589.6x10-9m
therefore v2 = c/ λ2 = 3x108/589.6x10-9
= 5.088x1014/sec
ΔE=E2-E1 = h(v2-v1)
= (6.626x10-34)(5.093x-5.088)x1014
= 3.31x10-22J
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) C6H5OH
(b) C6H5NO2
(c) CH3CH=CHCHO
(d) C6H5–CHO
(e) C6 H5 - C+H2
(f) CH3CH = CHC+H2
Explain the formation of H2 molecule on the basis of valence bond theory.
Pay load is defined as the difference between the mass of displaced air and the mass of the balloon. Calculate the pay load when a balloon of radius 10 m, mass 100 kg is filled with helium at 1.66 bar at 27°C. (Density of air = 1.2 kg m–3 and R = 0.083 bar dm3 K–1 mol–1).
How does H2O2 behave as a bleaching agent?
Write the expression for the equilibrium constant, Kc for each of the following reactions:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g)
(ii) 2Cu(NO3)2 (s) ↔ 2CuO (s) + 4NO2 (g) + O2 (g)
(iii) CH3COOC2H5(aq) + H2O(l) ↔ CH3COOH (aq) + C2H5OH (aq)
(iv) Fe3+ (aq) + 3OH– (aq) ↔ Fe(OH)3 (s)
(v) I2 (s) + 5F2 ↔ 2IF5
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
The first (ΔiH1) and the second (ΔiH) ionization enthalpies (in kJ mol–1) and the (ΔegH) electron gain enthalpy (in kJ mol–1) of a few elements are given below:
Elements | ΔiH1 | ΔiH | ΔegH |
I | 520 | 7300 | -60 |
II | 419 | 3051 | -48 |
III | 1681 | 3374 | -328 |
IV | 1008 | 1846 | -295 |
V | 2372 | 5251 | +48 |
VI | 738 | 1451 | -40 |
Which of the above elements is likely to be :
(a) the least reactive element.
(b) the most reactive metal.
(c) the most reactive non-metal.
(d) the least reactive non-metal.
(e) the metal which can form a stable binary halide of the formula MX2, (X=halogen).
(f) the metal which can form a predominantly stable covalent halide of the formula MX (X=halogen)?
Consider the reaction of water with F2 and suggest, in terms of oxidation and reduction, which species are oxidised or reduced.
Which of the following reactions will get affected by increasing the pressure?
Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) COCl2 (g) ↔ CO (g) + Cl2 (g)
(ii) CH4 (g) + 2S2 (g) ↔ CS2 (g) + 2H2S (g)
(iii) CO2 (g) + C (s) ↔ 2CO (g)
(iv) 2H2 (g) + CO (g) ↔ CH3OH (g)
(v) CaCO3 (s) ↔ CaO (s) + CO2 (g)
(vi) 4 NH3 (g) + 5O2 (g) ↔ 4NO (g) + 6H2O(g)
Write the general outer electronic configuration of s-, p-, d- and f- block elements.
Please change the background colour
Sir, The answer is not matching with NCERT Answers.