For the process to occur under adiabatic conditions, the correct condition is:
(i) ΔT = 0
(ii) Δp = 0
(iii) q = 0
(iv) w = 0
An adiabatic process is one that occurs without transfer of heat or matter between a system and its surroundings & it helps in explaining first law of thermodynamics
Hence, under adiabatic conditions, q = 0.
Therefore, alternative (iii) is correct.
In a process, 701 J of heat is absorbed by a system and 394 J ofwork is done by the system. What is the change in internal energy for the process?
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
For the reaction at 298 K,
2A + B → C
ΔH = 400 kJ mol-1and ΔS = 0.2 kJ K-1mol-1
At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range?
A reaction, A + B → C + D + q is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(iv) possible at any temperature
The equilibrium constant for a reaction is 10. What will be the value of ΔG0 ? R = 8.314 JK–1 mol–1, T = 300 K.
The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, –890.3 kJ mol–1 , –393.5 kJ mol–1, and –285.8 kJ mol–1 respectively. Enthalpy of formation of CH4(g) will be
(i) –74.8 kJ mol–1
(ii) –52.27 kJ mol–1
(iii) +74.8 kJ mol–1
(iv) +52.26 kJ mol–1
Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to ice at -10.0°C. ΔfusH = 6.03 kJ mol-1 at 0°C.
Cp[H2O(l)] = 75.3 J mol-1 K-1
Cp[H2O(s)] = 36.8 J mol-1 K-1
For an isolated system, ΔU = 0, what will be ΔS?
Calculate the enthalpy change for the process
CCl4(g) → C(g) + 4 Cl(g)
and calculate bond enthalpy of C – Cl in CCl4(g).
ΔvapH0(CCl4) = 30.5 kJ mol–1.
ΔfH0 (CCl4) = –135.5 kJ mol–1.
ΔaH0 (C) = 715.0 kJ mol–1 , where ΔaH0 is enthalpy of atomisation
ΔaH0 (Cl2) = 242 kJ mol–1
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
What do you understand by isoelectronic species? Name a species that will be isoelectronic with each of the following atoms or ions.
(i) F–
(ii) Ar
(iii) Mg2+
(iv) Rb+
Give a brief description of the principles of the following techniques taking an example in each case.
(a) Crystallisation
(b) Distillation
(c) Chromatography
Explain the principle of paper chromatography.
At 0°C, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
How is excessive content of CO2 responsible for global warming?
Symbols can be written, whereas symbols
are not acceptable. Answer briefly.
Write the expression for the equilibrium constant, Kc for each of the following reactions:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g)
(ii) 2Cu(NO3)2 (s) ↔ 2CuO (s) + 4NO2 (g) + O2 (g)
(iii) CH3COOC2H5(aq) + H2O(l) ↔ CH3COOH (aq) + C2H5OH (aq)
(iv) Fe3+ (aq) + 3OH– (aq) ↔ Fe(OH)3 (s)
(v) I2 (s) + 5F2 ↔ 2IF5
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
If the speed of light is 3.0 × 108 ms–1, calculate the distance covered by light in 2.00 ns.
Noice noice
Best top sites of students
Best top sites of students
very good site for students but why only two questions are showing for this chapter
Ur site is very useful for every student