Why is Li2CO3 decomposed at a lower temperature whereas Na2CO3 at higher temperature?
As we move down the alkali metal group, the electropositive character increases. This causes an increase in the stability of alkali carbonates. However, lithium carbonate is not so stable to heat. This is because lithium carbonate is covalent. Lithium ion, being very small in size, polarizes large carbonate ion, leading to the formation of more stable lithium oxide.
Li2CO3 LiO2 + CO2
Therefore, lithium carbonate decomposes at a low temperature while a stable sodium carbonate decomposes at a high temperature.
Compare the alkali metals and alkaline earth metals with respect to
(i) ionization enthalpy
(ii) basicity of oxides and
(iii) solubility of hydroxides.
Compare the solubility and thermal stability of the following compounds of the alkali metals with those of the alkaline earth metals.
(a) Nitrates (b) Carbonates (c) Sulphates.
Discuss the various reactions that occur in the Solvay process.
Comment on each of the following observations:
(a) The mobilities of the alkali metal ions in aqueous solution are Li+ < Na+ < K+ < Rb+ < Cs+
(b) Lithium is the only alkali metal to form a nitride directly.
(c) E° for M2+(aq) (where M = Ca, Sr or Ba) is nearly constant.
Why are lithium salts commonly hydrated and those of the other alkali metal ions usually anhydrous?
State as to why
(a) a solution of Na2CO3 is alkaline ?
(b) alkali metals are prepared by electrolysis of their fused chlorides ?
(c) sodium is found to be more useful than potassium ?
When an alkali metal dissolves in liquid ammonia the solution can acquire different colours. Explain the reasons for this type of colour change.
In what ways lithium shows similarities to magnesium in its chemical behaviour?
Find the oxidation state of sodium in Na2O2.
Explain why is sodium less reactive than potassium?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Refer to the periodic table given in your book and now answer the following questions:
(a) Select the possible non metals that can show disproportionation reaction.
(b) Select three metals that can show disproportionation reaction.
Consider the following species:
N3–, O2–, F–, Na+, Mg2+ and Al3+
(a) What is common in them?
(b) Arrange them in the order of increasing ionic radii.
What is the basic theme of organisation in the periodic table?
Pressure is determined as force per unit area of the surface. The SI unit of pressure, Pascal is as shown below:
1Pa = 1N m–2
If mass of air at sea level is 1034 g cm–2, calculate the pressure in Pascal.
Write the important conditions required for the linear combination of atomic orbitals to form molecular orbitals.
Write chemical reactions to show the amphoteric nature of water.
What are the major differences between metals and non-metals?
Describe the effect of :
a) addition of H2
b) addition of CH3OH
c) removal of CO
d) removal of CH3OH on the equilibrium of the reaction: 2H2(g) + CO (g) ↔ CH3OH (g)
The first (ΔiH1) and the second (ΔiH) ionization enthalpies (in kJ mol–1) and the (ΔegH) electron gain enthalpy (in kJ mol–1) of a few elements are given below:
Elements | ΔiH1 | ΔiH | ΔegH |
I | 520 | 7300 | -60 |
II | 419 | 3051 | -48 |
III | 1681 | 3374 | -328 |
IV | 1008 | 1846 | -295 |
V | 2372 | 5251 | +48 |
VI | 738 | 1451 | -40 |
Which of the above elements is likely to be :
(a) the least reactive element.
(b) the most reactive metal.
(c) the most reactive non-metal.
(d) the least reactive non-metal.
(e) the metal which can form a stable binary halide of the formula MX2, (X=halogen).
(f) the metal which can form a predominantly stable covalent halide of the formula MX (X=halogen)?
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
yes, but at very high temp as compared to others although it is thermally stable compound
Does sodium carbonate decompose