Question 2

Name the electromagnetic radiations use for (a) water purification, and (b) eye surgery.

Answer

(a) Water Purification : Ultraviolet Radiation

(b) Eye Surgery : Infrared Radiation

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:- The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10
^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

">The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q.

(a) A charge q is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?

(b) Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.

- Q:-
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of

(a) reflected, and

(b) refracted light? Refractive index of water is 1.33. - Q:- A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 eV. Can it detect a wavelength of 6000 nm?">
A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 eV. Can it detect a wavelength of 6000 nm?

- Q:- A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.
(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

">A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.

(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

- Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A charge of 8 mC is located at the origin. Calculate the work done in taking a small charge of -2 x 10

^{-9}C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm). - Q:-
A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m

^{2}.(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 10

^{5}NC^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 105 NC

^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:- The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10
^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

">The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
A 4 µF capacitor is charged by a 200 V supply. It is then disconnected from the supply, and is connected to another uncharged 2 µF capacitor. How much electrostatic energy of the first capacitor is lost in the form of heat and electromagnetic radiation?

- Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
Two charges 5 x 10

^{-8}C and -3 x 10^{-8}C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Copyright © 2013-14 saralstudy.com. All Rights Reserved. Site Powered by Kochan Group