Question 2

A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

Answer

The given figure shows six equal amount of charges, q, at the vertices of a regular hexagon.

Where, Charge, q = 5 µC = 5 × 10^{- 6} C

Side of the hexagon, l = AB = BC = CD = DE = EF = FA = 10 cm

Distance of each vertex from centre O, d = 10 cm

Electric potential at point O,

Where,

_{}= Permittivity of free space

Therefore, the potential at the centre of the hexagon is 2.7 × 10^{6} V.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed at its focus.

(c) The portion of the wavefront of light from a distant star intercepted by the Earth.

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?

- Q:-
A compass needle free to turn in a horizontal plane is placed at the centre of circular coil of 30 turns and radius 12 cm. The coil is in a vertical plane making an angle of 45º with the magnetic meridian. When the current in the coil is 0.35 A, the needle points west to east.

(a) Determine the horizontal component of the earth's magnetic field at the location.

(b) The current in the coil is reversed, and the coil is rotated about its vertical axis by an angle of 90º in the anticlockwise sense looking from above. Predict the direction of the needle. Take the magnetic declination at the places to be zero.

- Q:-
An electric dipole with dipole moment 4 × 10

^{−9}C m is aligned at 30° with the direction of a uniform electric field of magnitude 5 × 10^{4}N C^{−1}. Calculate the magnitude of the torque acting on the dipole. - Q:-
An oil drop of 12 excess electrons is held stationary under a constant electric field of 2.55 x 10

^{4}N C^{-1}in Millikan's oil drop experiment. The density of the oil is 1.26 g cm^{-3}. Estimate the radius of the drop. (*g*= 9.81 m s^{-2};*e*= 1.60 x 10^{-19}C). - Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
In an experiment on photoelectric effect, the slope of the cut-off voltage versus frequency of incident light is found to be 4.12 × 10

^{−15}V s. Calculate the value of Planck’s constant. - Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
The radius of the innermost electron orbit of a hydrogen atom is 5.3 ×10

^{−11}m. What are the radii of the n = 2 and n =3 orbits?

anshi
2019-10-10 20:29:24

Thanks and very nice

lalmexxian
2019-07-20 12:19:17

@nishma_ for a regular hexagon the internal angles are 60 degrees each which makes 6 equilateral triangle s inside the hexagon.

nishma
2019-06-28 20:10:08

l have adoubt that how the distance from cetre to each vertices is10cm

- NCERT Chapter