Question 23

An infinite line charge produces a field of 9 × 10^{4} N/C at a distance of 2 cm. Calculate the linear charge density.

Answer

Electric field produced by the infinite line charges at a distance d having linear charge density λ is given by the relation,

Where,

d = 2 cm = 0.02 m

E = 9 × 10^{4} N/C

∈_{0} = Permittivity of free space

= 9 × 10^{9} N m^{2} C^{−2}

^{}

= 10 μC/m

Therefore, the linear charge density is 10 μC/m.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge?

- Q:-
**(a)**An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. Why not?**(b)**Explain why two field lines never cross each other at any point? - Q:-
A short bar magnet of magnetic moment 5.25 x 10

^{-2}J T^{-1}is placed with its axis perpendicular to the earth's field direction. At what distance from the centre of the magnet, the resultant field is inclined at 45º with earth's field on(a) its normal bisector and (b) its axis. Magnitude of the earth's field at the place is given to be 0.42 G. Ignore the length of the magnet in comparison to the distances involved.

- Q:-
The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?

- Q:-
An oil drop of 12 excess electrons is held stationary under a constant electric field of 2.55 × 10

^{4}N C^{−1}in Millikan’s oil drop experiment. The density of the oil is 1.26 g cm^{−3}. Estimate the radius of the drop. (g = 9.81 m s^{−2}; e = 1.60 × 10^{−19}C). - Q:-
In half-wave rectification, what is the output frequency if the input frequency is 50 Hz. What is the output frequency of a full-wave rectifier for the same input frequency.

- Q:-
**Answer the following questions:**(a) In a single slit diffraction experiment, the width of the slit is made double the original width. How does this affect the size and intensity of the central diffraction band?

(b) In what way is diffraction from each slit related to the interference pattern in a double-slit experiment?

(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?

(d) Two students are separated by a 7 m partition wall in a room 10 m high. If both light and sound waves can bend around obstacles, how is it that the students are unable to see each other even though they can converse easily.

(e) Ray optics is based on the assumption that light travels in a straight line. Diffraction effects (observed when light propagates through small apertures/slits or around small obstacles) disprove this assumption. Yet the ray optics assumption is so commonly used in understanding location and several other properties of images in optical instruments. What is the justification?

- Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 105 NC

^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:-
An electric dipole with dipole moment 4 × 10

^{−9}C m is aligned at 30° with the direction of a uniform electric field of magnitude 5 × 10^{4}N C^{−1}. Calculate the magnitude of the torque acting on the dipole. - Q:-
(a) Alloys of metals usually have (greater/less) resistivity than that of their constituent metals.

(b) Alloys usually have much (lower/higher) temperature coefficients of resistance than pure metals.

(c) The resistivity of the alloy manganin is nearly independent of/increases rapidly with increase of temperature.

(d) The resistivity of a typical insulator (e.g., amber) is greater than that of a metal by a factor of the order of (10

^{22}/10^{3}). - Q:-
A galvanometer coil has a resistance of 15 Ω and the metre shows full scale deflection for a current of 4 mA. How will you convert the metre into an ammeter of range 0 to 6 A?

Kundan
2019-08-16 13:09:32

NCERT ans is wrong

physics Nerd
2019-07-26 19:42:18

0.1Î¼C/m

Aman verma
2019-04-30 00:53:22

Answer is 1*10^-7 Coloumb which is 0.1 micro coloumb but your answer is wrong as ncert also printed wrong!!!!!

Amal c Paulson
2019-03-27 07:15:19

Answer is wrong

Arif ahmad
2019-01-03 10:18:36

Answer is wrong

I am right
2018-06-16 14:05:01

Answer is correct 10uC/m = 10 x 10^-6 C/m

Sharan Kumar
2018-05-28 21:55:33

This answer is wrong The correct answer is 1.008Ã10^-6

Sapna
2018-05-26 03:11:26

Really helpful

Ritesh
2018-05-25 18:34:30

Sister answere sahi hi apne answeres ko micro coulomb me badalo

sweety priya
2017-08-21 09:51:46

hi your answer is wrong the correct answer is 10^-7. explanation :- ð¸ = ð /2ðð0ð â ð = 2ðð0ðð¸ ð=2*3.14*8.85*10^-12*9*10^4 ð=6.28*18*10^-2*10^4*8.85*10^-12 ð=1000.3*10^2*10^-12 ð=10^3*10^2*10^-12 ð=10^-7 so,the correct answer is 10^-7

- NCERT Chapter