Question 11

A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

Answer

Capacitance of the capacitor, *C* = 600 pF

Potential difference, *V* = 200 V

Electrostatic energy stored in the capacitor is given by,

If supply is disconnected from the capacitor and another capacitor of capacitance *C* = 600 pF is connected to it, then equivalent capacitance (*C*^{'}) of the combination is given by,

New electrostatic energy can be calculated as

Loss in electrostatic enegy = *E - E'*

= 1.2 x 10^{-5} - 0.6 x 10^{-5}

= 0.6 x 10^{-5}

= 6 x 10^{-6} J

Therefore, the electrostatic energy lost in the process is 6 x 10^{-6} J.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
Is it necessary for a transmitting antenna to be at the same height as that of the receiving antenna for line-of-sight communication? A TV transmitting antenna is 81m tall. How much service area can it cover if the receiving antenna is at the ground level?

- Q:-
A magnetic needle free to rotate in a vertical plane parallel to themagnetic meridian has its north tip pointing down at 22º with the horizontal. The horizontal component of the earth's magnetic field at the place is known to be 0.35 G. Determine the magnitude of the earth's magnetic field at the place.

- Q:-
For a circular coil of radius R and N turns carrying current I, the magnitude of the magnetic field at a point on its axis at a distance x from its centre is given by,

(a) Show that this reduces to the familiar result for field at the centre of the coil.

(b) Consider two parallel co-axial circular coils of equal radius R, and number of turns N, carrying equal currents in the same direction, and separated by a distance R. Show that the field on the axis around the mid-point between the coils is uniform over a distance that is small as compared to R, and is given by,

, approximately.

[Such an arrangement to produce a nearly uniform magnetic field over a small region is known as Helmholtz coils.]

- Q:-
When a forward bias is applied to a p-n junction, it

(a) raises the potential barrier.

(b) reduces the majority carrier current to zero.

(c) lowers the potential barrier.

(d) None of the above.

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
Light of wavelength 5000 Å falls on a plane reflecting surface. What are the wavelength and frequency of the reflected light? For what angle of incidence is the reflected ray normal to the incident ray?

- Q:-
A point charge causes an electric flux of −1.0 × 10

^{3}Nm^{2}/C to pass through a spherical Gaussian surface of 10.0 cm radius centered on the charge.(a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?

(b) What is the value of the point charge?

- Q:-
The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?

- Q:- The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery?
- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?

Anjali Kashyap
2019-07-23 18:58:14

Thank you

Adithya
2019-06-23 19:28:03

common potential =c1c2\\c1+c2

Deepika
2019-06-14 11:05:07

How can we now that it is connected in series

Ameer Navas
2019-06-08 22:37:09

It is parallel not series.

Gode Basar
2019-05-10 07:07:36

How can we know that the capacitors are connected in series?

Nandini
2019-05-08 10:41:10

How can we conclude that capacitors are in series

Vibhor Singh
2018-05-23 00:58:49

In this question it is not written that uncharged capacitor is connected in series then how you take in series according to the solution??

vinay
2018-02-28 07:17:15

what if the unchanged capacitor is connected to parallel with it

- NCERT Chapter