Question 19

A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

Answer

Net electric flux (Φ_{Net}) through the cubic surface is given by,

Where, ∈0 = Permittivity of free space

= 8.854 × 10^{−12} N^{−1}C^{2} m^{−2}

q = Net charge contained inside the cube = 2.0 μC = 2 × 10^{−6} C

∴

= 2.26 × 10^{5} N m^{2} C^{−1}

The net electric flux through the surface is 2.26 ×10^{5} N m^{2}C^{−1}.

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
In a Van de Graaff type generator a spherical metal shell is to be a 15 x 10

^{6}V electrode. The dielectric strength of the gas surrounding the electrode is 5 x 10^{7}Vm^{-1}. What is the minimum radius of the spherical shell required? (You will learn from this exercise why one cannot build an electrostatic generator using a very small shell which requires a small charge to acquire a high potential.) - Q:-
The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel.

(a) What is the total capacitance of the combination?

(b) Determine the charge on each capacitor if the combination is connected to a 100 V supply.

- Q:-
A charge of 8 mC is located at the origin. Calculate the work done in taking a small charge of -2 x 10

^{-9}C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm). - Q:-
In a chamber, a uniform magnetic field of 6.5 G (1 G = 10

^{-4}T) is maintained. An electron is shot into the field with a speed of 4.8 x 10^{6 }m s^{-1}normal to the field. Explain why the path of the electron is a circle. Determine the radius of the circular orbit. (*e*= 1.6 x 10^{-19}C,*m*_{e}= 9.1 x 10^{-31}kg) - Q:-
Answer the following questions regarding earth's magnetism:

(a) A vector needs three quantities for its specification. Name the three independent quantities conventionally used to specify the earth's magnetic field.

(b) The angle of dip at a location in southern India is about 18º.

Would you expect a greater or smaller dip angle in Britain?

(c) If you made a map of magnetic field lines at Melbourne in Australia, would the lines seem to go into the ground or come out of the ground?

(d) In which direction would a compass free to move in the vertical plane point to, if located right on the geomagnetic north or south pole?

(e) The earth's field, it is claimed, roughly approximates the field due to a dipole of magnetic moment 8 x 1022 J T

^{-1 }located at its centre. Check the order of magnitude of this number in some way.(f ) Geologists claim that besides the main magnetic N-S poles, there are several local poles on the earth's surface oriented in different directions. How is such a thing possible at all?

- Q:-
Answer carefully:

(a) Two large conducting spheres carrying charges Q

_{1}and Q_{2}are brought close to each other. Is the magnitude of electrostatic force between them exactly given by Q_{1}Q_{2}/4π∈_{0}r^{2}, where r is the distance between their centres?(b) If Coulomb's law involved 1/r

^{3}dependence (instead of 1/r^{2}), would Gauss's law be still true?(c) A small test charge is released at rest at a point in an electrostatic field configuration. Will it travel along the field line passing through that point?

(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?

(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?

(f) What meaning would you give to the capacitance of a single conductor?

(g) Guess a possible reason why water has a much greater dielectric constant (= 80) than say, mica (= 6).

- Q:-
(a) Two insulated charged copper spheres A and B have their centers separated by a distance of 50 cm. What is the mutual force of electrostatic repulsion if the charge on each is 6.5 × 10

^{−7}C? The radii of A and B are negligible compared to the distance of separation.(b) What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?

Shah
2019-07-08 20:09:55

Why 9 cm edge length is given?

Uttu
2019-05-12 18:02:30

Wow

Ayush
2019-05-09 22:17:20

Is ko 6 se divide kyo nhi kiya

Ap
2019-04-27 11:55:23

Wrong for charge at centre of cube: Flux = q/6Ã¢Â‚Â¬Ã‚Â°

sindhu
2019-03-04 12:12:46

ty

Vikas yadav
2018-07-16 08:25:52

Fantastic.....

akansha singh
2017-05-25 13:53:29

i cant understand please explain briefly.

- NCERT Chapter

Copyright © 2021 saralstudy.com. All Rights Reserved.