Question 18

A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

Answer

The square can be considered as one face of a cube of edge 10 cm with a centre where charge q is placed. According to Gauss’s theorem for a cube, total electric flux is through all its six faces.

Hence, electric flux through one face of the cube i.e., through the square,

Where, ∈0 = Permittivity of free space

= 8.854 × 10^{−12} N^{−1}C^{2} m^{−2} q = 10 μC = 10 × 10^{−6} C

∴

= 1.88 × 10^{5} N m^{2} C^{−1}

Therefore, electric flux through the square is 1.88 × 10^{5} N m^{2} C^{−1}.

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
A point charge of 2.0 μC is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Q:-
The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
The three stable isotopes of neon:

^{20}Ne_{10},^{21}Ne_{10}and^{22}Ne_{10}have respective abundances of 90.51%, 0.27% and 9.22%. The atomic masses of the three isotopes are 19.99 u, 20.99 u and 21.99 u, respectively. Obtain the average atomic mass of neon. - Q:-
(a) A conductor A with a cavity as shown in Fig. 1.36 (a) is given a charge Q. Show that the entire charge must appear on the outer surface of the conductor.

( b) Another conductor B with charge q is inserted into the cavity keeping B insulated from A. Show that the total charge on the outside surface of A is Q + q [Fig. 1.36(b)].

(c) A sensitive instrument is to be shielded from the strong electrostatic fields in its environment. Suggest a possible way.

- Q:-
Does short-sightedness (myopia) or long-sightedness (hypermetropia) imply necessarily that the eye has partially lost its ability of accommodation? If not, what might cause these defects of vision?

- Q:-
**(a)**An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. Why not?**(b)**Explain why two field lines never cross each other at any point? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
Monochromatic light of wavelength 632.8 nm is produced by a helium-neon laser. The power emitted is 9.42 mW.

(a) Find the energy and momentum of each photon in the light beam,

(b) How many photons per second, on the average, arrive at a target irradiated by this beam? (Assume the beam to have uniform cross-section which is less than the target area), and

(c) How fast does a hydrogen atom have to travel in order to have the same momentum as that of the photon?

- Q:-
In a parallel plate capacitor with air between the plates, each plate has an area of 6 x 10-

^{3}m^{2}and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor? - Q:-
A cylindrical capacitor has two co-axial cylinders of length 15 cm and radii 1.5 cm and 1.4 cm. The outer cylinder is earthed and the inner cylinder is given a charge of 3.5 µC. Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends).

- Q:-
In a Van de Graaff type generator a spherical metal shell is to be a 15 x 10

^{6}V electrode. The dielectric strength of the gas surrounding the electrode is 5 x 10^{7}Vm^{-1}. What is the minimum radius of the spherical shell required? (You will learn from this exercise why one cannot build an electrostatic generator using a very small shell which requires a small charge to acquire a high potential.) - Q:-
In a Young’s double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm. Determine the wavelength of light used in the experiment.

Karisa
2021-12-13 01:11:42

Nice ð

SPBhagyam
2020-07-30 20:28:32

Thakzzz

SPBhagyam
2020-07-30 20:27:56

Gud

Anamika
2019-11-24 15:34:39

Thnq ð

Pratisha
2019-06-18 22:30:02

Can we solve this without using Gauss law?? ( By using EdScos0 alone)

Arvendra dhakar
2018-12-25 07:29:22

Thanks a lot

Shivangi srivastava
2018-07-01 12:04:54

Thanks

Miracle
2017-06-16 13:41:37

Two charges q1= 10uc and q2= -12uc are within a spherical surface of radius 10cm. What is the total flux through the surface ?

Harsh
2017-04-22 13:09:50

Nice

Student
2017-04-16 11:13:19

Thanks a lot

- NCERT Chapter