Calculate the pH of the following solutions:
(a) 2 g of TlOH dissolved in water to give 2 litre of solution.
(b) 0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution.
(c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(d) 1mL of 13.6 M HCl is diluted with water to give 1 litre of solution.
For 2g of TlOH dissolved in water to give 2 L of solution:
[TIOH(aq)] = 2/2 g/L
= 2/2 x 1/221 M
= 1/221 M
TIOH(aq) → TI+(aq) + OH-(aq)
OH-(aq) = TIOH(aq) = 1/221M
Kw = [H+] [OH-]
10-14 = [H+] [1/221]
[H+] = 221x10-14
⇒ pH = -log [H+] = -log ( 221x10-14)
= 11.65
(b) For 0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution:
Ca(OH)2 → Ca2+ + 2OH-
[Ca(OH)2] = 0.3x1000/500 = 0.6M
OH-(aq) = 2 x [Ca(OH)2(aq)] = 2 x 0.6 = 1.2M
[H+] = Kw / OH-(aq)
= 10-14/1.2 M
= 0.833 x 10-14
pH = -log(0.833 x 10-14)
= -log(8.33 x 10-13)
= (-0.902 + 13)
= 12.098
(c) For 0.3 g of NaOH dissolved in water to give 200 mL of solution:
NaOH → Na +(aq) + OH-(aq)
[NaOH] = 0.3 x 1000/200 = 1.5M
[OH-(aq)] = 1.5M
Then [H+] = 10-14 / 1.5
= 6.66 x 10-13
pH = -log ( 6.66 x 10-13)
= 12.18
(d) For 1mL of 13.6 M HCl diluted with water to give 1 L of solution:
13.6 x 1 mL = M2 x 1000 mL
(Before dilution) (after dilution)
13.6 x 10-3 = M2 x 1L
M2 = 1.36 x 10-2
[H+] = 1.36 × 10-2
pH = - log (1.36 × 10-2)
= (- 0.1335 + 2)
= 1.866 = 1.87
Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl
(b) 0.005 M NaOH
(c) 0.002 M HBr
(d) 0.002 M KOH
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
The ionization constant of acetic acid is 1.74 x 10-5. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.
Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
CH4 (g) + H2O (g) ↔ CO (g) + 3H2 (g)
(a) Write as expression for Kp for the above reaction.
(b) How will the values of Kp and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst ?
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl5 is 8.3 ×10-3. If decomposition is depicted as,
PCl5 (g) ↔ PCl3 (g) + Cl2 (g) ΔrH0 = 124.0 kJ mol–1
(a) write an expression for Kc for the reaction.
(b) what is the value of Kc for the reverse reaction at the same temperature ?
(c) what would be the effect on Kc if (i) more PCl5 is added (ii) pressure is increased (iii) the temperature is increased ?
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Ionic product of water at 310 K is 2.7 x 10-14. What is the pH of neutral water at this temperature?
Reaction between N2 and O2– takes place as follows:
2N2 (g) + O2 (g) ↔ 2N2O (g)
If a mixture of 0.482 mol N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10–37, determine the composition of equilibrium mixture.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Explain the significance of sodium, potassium, magnesium and calcium inbiological fluids.
Complete the following chemical reactions.
(i) PbS(s) + H2O2(aq) →
(ii) MnO-4(aq) + H2O2(aq) →
(iii) CaO(s) + H2O(g) →
(iv) AlCl3(g) + H2O(I) →
(v) Ca3N2(s) + H2O(I) →
Classify the above into (a) hydrolysis, (b) redox and (c) hydration reactions.
Dual behaviour of matter proposed by de Broglie led to the discovery of electron microscope often used for the highly magnified images of biological molecules and other type of material. If the velocity of the electron in this microscope is 1.6 × 106 ms–1, calculate de Broglie wavelength associated with this electron.
Rationalise the given statements and give chemical reactions :
(i) Lead(II) chloride reacts with Cl2 to give PbCl4.
(ii) Lead(IV) chloride is highly unstable towards heat.
(iii) Lead is known not to form an iodide, PbI4.
Which out of NH3 and NF3 has higher dipole moment and why?
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
What will be the pressure of the gaseous mixture when 0.5 L of H2 at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in a 1L vessel at 27°C?
What are the harmful effects of photochemical smog and how can they be controlled?
Draw the cis and trans structures of hex-2-ene. Which isomer will have higher b.p. and why?