Why is a solution of potassium hydroxide used to absorb carbon dioxide evolved during the estimation of carbon present in an organic compound?
Carbon dioxide is acidic in nature and potassium hydroxide is a strong base. Hence, carbon dioxide reacts with potassium hydroxide to form potassium carbonate and water.
2KOH + CO2 → K2CO3 + H2O
Thus, the mass of the U-tube containing KOH increases. This increase gives the mass of CO2 produced. From its mass, the percentage of carbon in the organic compound can be estimated.
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?
(a) Cl3CCOOH > Cl2CHCOOH > ClCH2COOH
(b) CH3CH2COOH > (CH3)2CHCOOH > (CH3)3C.COOH
Write bond line formulas for : Isopropyl alcohol, 2,3-Dimethyl butanal, Heptan-4- one.
Give condensed and bond line structural formulas and identify the functional group(s) present, if any, for :
(a) 2,2,4-Trimethylpentane
(b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
(c) Hexanedial
Indicate the σ and π bonds in the following molecules :
(i) C6H6,
(ii) C6H12,
(iii) CH2Cl2,
(iv) CH2=C=CH2,
(v) CH3NO2,
(vi) HCONHCH3
Identify the reagents shown in bold in the following equations as nucleophiles or electrophiles:
(a) CH3COOH + HO- → CH3COO- + H2O
(b) CH3COCH3 + C-N → (CH3)2 C (CN) (OH)
(c) C6H5 + CH3C+O → C6H5COCH3
For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.
Which of the following represents the correct IUPAC name for the compounds concerned?
(a) 2,2-Dimethylpentane or 2-Dimethylpentane
(b) 2,4,7-Trimethyloctane or 2,5,7-Trimethyloctane
(c) 2-Chloro-4-methylpentane or 4-Chloro-2-methylpentane
(d) But-3-yn-1-ol or But-4-ol-1-yne
Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) C6H5OH
(b) C6H5NO2
(c) CH3CH=CHCHO
(d) C6H5–CHO
(e) C6 H5 - C+H2
(f) CH3CH = CHC+H2
Which of the following carbocation is most stable ?
How do you account for the formation of ethane during chlorination of methane?
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
Compare the alkali metals and alkaline earth metals with respect to
(i) ionization enthalpy
(ii) basicity of oxides and
(iii) solubility of hydroxides.
Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH–
(b) F–
(c) H+
(d) BCl3
For the process to occur under adiabatic conditions, the correct condition is:
(i) ΔT = 0
(ii) Δp = 0
(iii) q = 0
(iv) w = 0
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one example of each type.
What are the harmful effects of photochemical smog and how can they be controlled?
What do you mean by Biochemical Oxygen Demand (BOD)?
What sorts of informations can you draw from the following reaction ?
(CN)2(g) + 2OH-(aq) → CN-(aq) + CNO-(aq) + H2O(l)
For the following compounds, write structural formulas and IUPAC names for all possible isomers having the number of double or triple bond as indicated :
(a) C4H8 (one double bond)
(b) C5H8 (one triple bond)