Consider the reactions:
(a) 6CO2(g) + 6H2O(l) → C6H12O6(aq) + 6O2(g)
(b) O3(g) + H2O2(l) → H2O(l) + 2O2(g)
Why it is more appropriate to write these reactions as:
(a) 6CO2(g) + 12H2O(l) → C6H12O6(aq) + 6H2O(l) + 6O2(g)
(b) O3(g) + H2O2(l) → H2O(l) + O2(g) + O2(g)
Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.
(a) The process of photosynthesis involves two steps.
Step 1:
H2O decomposes to give H2 and O2.
2H2O(l) → 2H2(g) + O2(g)
Step 2:
The H2 produced in step 1 reduces CO2, thereby producing glucose (C6H12O6) and H2O.
6CO2(g) + 12H2(g) → C6H12O6(s) + 6H2O(l)
Now, the net reaction of the process is given as:
It is more appropriate to write the reaction as given above because water molecules are also produced in the process of photosynthesis.
The path of this reaction can be investigated by using radioactive H2O18 in place of H2O.
(b) O2 is produced from each of the two reactants O3 and H2O2. For this reason, O2 is written twice.
The given reaction involves two steps. First, O3 decomposes to form O2 and O. In the second step, H2O2 reacts with the O produced in the first step, thereby producing H2O and O2.
The path of this reaction can be investigated by using H2O18 or O183.
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
(a) KI3
(b) H2S4O6
(c) Fe3O4
(d) CH3CH2OH
(e) CH3COOH
Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
(d) 2K(s) + F2(g) → 2K+F– (s)
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) P4(s) + OH – (aq) → PH3(g) + HPO2 – (aq)
(b) N2H4(l) + ClO3 – (aq) → NO(g) + Cl–(g)
(c) Cl2O7 (g) + H2O2(aq) → ClO – 2(aq) + O2(g) + H + (aq)
Fluorine reacts with ice and results in the change:
H2O(s) + F2(g) → HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Write the formulae for the following compounds:
(a) Mercury(II) chloride
(b) Nickel(II) sulphate
(c) Tin(IV) oxide
(d) Thallium(I) sulphate
(e) Iron(III) sulphate
(f) Chromium(III) oxide
While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
The compound AgF2 is an unstable compound. However, if formed, the compound acts as a very strong oxidizing agent. Why?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
What is the relationship between the members of following pairs of structures? Are they structural or geometrical isomers or resonance contributors?
(a)
(b)
(c)
What is the significance of the terms - ‘isolated gaseous atom’ and ‘ground state’ while defining the ionization enthalpy and electron gain enthalpy? Hint: Requirements for comparison purposes.
Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL–1 and the mass per cent of nitric acid in it being 69%.
What properties of water make it useful as a solvent? What types of compound can it (i) dissolve, and (ii) hydrolyse?
Find energy of each of the photons which
(i) correspond to light of frequency 3× 1015 Hz.
(ii) have wavelength of 0.50 Å.
The pH of 0.005M codeine (C18H21NO3) solution is 9.95. Calculate its ionization constant and pKb.
Enthalpy of combustion of carbon to CO2 is -393.5 kJ mol-1. Calculate the heat released upon formation of 35.2 g of CO2 from carbon and dioxygen gas.
The first (ΔiH1) and the second (ΔiH) ionization enthalpies (in kJ mol–1) and the (ΔegH) electron gain enthalpy (in kJ mol–1) of a few elements are given below:
Elements | ΔiH1 | ΔiH | ΔegH |
I | 520 | 7300 | -60 |
II | 419 | 3051 | -48 |
III | 1681 | 3374 | -328 |
IV | 1008 | 1846 | -295 |
V | 2372 | 5251 | +48 |
VI | 738 | 1451 | -40 |
Which of the above elements is likely to be :
(a) the least reactive element.
(b) the most reactive metal.
(c) the most reactive non-metal.
(d) the least reactive non-metal.
(e) the metal which can form a stable binary halide of the formula MX2, (X=halogen).
(f) the metal which can form a predominantly stable covalent halide of the formula MX (X=halogen)?
Define the bond length.
How would you explain the fact that the first ionization enthalpy of sodium is lower than that of magnesium but its second ionization enthalpy is higher than that of magnesium?