(i) Calculate the number of electrons which will together weigh one gram.
(ii) Calculate the mass and charge of one mole of electrons.
(i) Mass of an electron = 9.1 x 10-28 g
Or
9.1 x 10-28 g contains = 1 electron
Therefore 1g contains = 1/9.1 x 10-28 *1 = 1.098 x 1027 electrons
(ii) We know, one mole of electron = 6.022 x 1023 electron
Mass of one electron = 9.1 × 10–28 g
Or
mass of 6.022 x 1023 electron = 9.1 x 10-28 x 6.022 x 1023 = 5.48 x 10-4 g
Charge on one electron = 1.6 × 10–19 coulomb
Charge on one mole of electron = (1.6 × 10–19 C x 6.022 × 1023)
= 9.63 × 104 C
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Calculate the number of atoms in each of the following
(i) 52 moles of Ar
(ii) 52 u of He
(iii) 52 g of He.
Write the atomic number of the element present in the third period and seventeenth group of the periodic table.
The pH of 0.005M codeine (C18H21NO3) solution is 9.95. Calculate its ionization constant and pKb.
The equilibrium constant for the following reaction is 1.6 ×105 at 1024K
H2(g) + Br2(g) ↔ 2HBr(g)
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024K.
What will be the conjugate bases for the Brönsted acids: HF, H2SO4 and HCO3?
Complete the following reactions:
The species: H2O, HCO–3, HSO-4 and NH3 can act both as Brönsted acids and bases. For each case give the corresponding conjugate acid and base.
What are electrophiles and nucleophiles? Explain with examples.
Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in C2H4 and C2H2 molecules.
The reaction of cyanamide, NH2CN (s), with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be –742.7 kJ mol–1 at 298 K. Calculate enthalpy change for the reaction at 298 K.
NH2CN(g) + 3/2 O2(g) → N2(g) + CO2(g) + H2O(l)
Thanks...
Thanks for the solution
Mass of e is 9.1 x 10^31 kg
Mr/Mrs cha,it's not necessary to take the mass of electron in kg only. We know that the mass of electron is 9.1*10^-28g or 9.1*10^-31kg so the solved question is right
Super
Mass of electron should be in kg
Mass of a electron is wrong here.It should be 9.1x 10^-31
Thnks alot
ððð
But mass of electron is 9.1 Ã10(-34)