The reaction of cyanamide, NH2CN (s), with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be –742.7 kJ mol–1 at 298 K. Calculate enthalpy change for the reaction at 298 K.
NH2CN(g) + 3/2 O2(g) → N2(g) + CO2(g) + H2O(l)
Enthalpy change for a reaction (ΔH) is given by the expression,
ΔH = ΔU + ΔngRT
Where, ΔU = change in internal energy
Δng = change in number of moles
For the given reaction,
Δng = ng (products) -
ng (reactants)
= (2 - 1.5) moles
Δng = 0.5 moles
And,
ΔU = -742.7 kJ mol-1
T = 298 K
R = 8.314 x 10-3 kJ mol-1 K-1
Substituting the values in the expression of ΔH:
ΔH = (-742.7 kJ mol-1) + (0.5 mol) (298 K) (8.314 x 10-3 kJ mol-1 K-1)
= -742.7 + 1.2
ΔH = -741.5 kJ mol-1
In a process, 701 J of heat is absorbed by a system and 394 J ofwork is done by the system. What is the change in internal energy for the process?
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
For the reaction at 298 K,
2A + B → C
ΔH = 400 kJ mol-1and ΔS = 0.2 kJ K-1mol-1
At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range?
A reaction, A + B → C + D + q is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(iv) possible at any temperature
The equilibrium constant for a reaction is 10. What will be the value of ΔG0 ? R = 8.314 JK–1 mol–1, T = 300 K.
The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, –890.3 kJ mol–1 , –393.5 kJ mol–1, and –285.8 kJ mol–1 respectively. Enthalpy of formation of CH4(g) will be
(i) –74.8 kJ mol–1
(ii) –52.27 kJ mol–1
(iii) +74.8 kJ mol–1
(iv) +52.26 kJ mol–1
Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to ice at -10.0°C. ΔfusH = 6.03 kJ mol-1 at 0°C.
Cp[H2O(l)] = 75.3 J mol-1 K-1
Cp[H2O(s)] = 36.8 J mol-1 K-1
For an isolated system, ΔU = 0, what will be ΔS?
Calculate the enthalpy change for the process
CCl4(g) → C(g) + 4 Cl(g)
and calculate bond enthalpy of C – Cl in CCl4(g).
ΔvapH0(CCl4) = 30.5 kJ mol–1.
ΔfH0 (CCl4) = –135.5 kJ mol–1.
ΔaH0 (C) = 715.0 kJ mol–1 , where ΔaH0 is enthalpy of atomisation
ΔaH0 (Cl2) = 242 kJ mol–1
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Calculate the pH of the following solutions:
(a) 2 g of TlOH dissolved in water to give 2 litre of solution.
(b) 0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution.
(c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(d) 1mL of 13.6 M HCl is diluted with water to give 1 litre of solution.
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Is there any change in the hybridisation of B and N atoms as a result of the following reaction?
BF3 + NH3 → F3B.NH3
What is the relationship between the members of following pairs of structures? Are they structural or geometrical isomers or resonance contributors?
(a)
(b)
(c)
Complete the following chemical reactions.
(i) PbS(s) + H2O2(aq) →
(ii) MnO-4(aq) + H2O2(aq) →
(iii) CaO(s) + H2O(g) →
(iv) AlCl3(g) + H2O(I) →
(v) Ca3N2(s) + H2O(I) →
Classify the above into (a) hydrolysis, (b) redox and (c) hydration reactions.
Statues and monuments in India are affected by acid rain. How?
Will CCl4 give white precipitate of AgCl on heating it with silver nitrate? Give reason for your answer.
Calculate the atomic mass (average) of chlorine using the following data:
% Natural Abundance | Molar Mass | |
35Cl | 75.77 | 34.9689 |
37Cl | 24.23 | 36.9659 |
An aqueous solution of borax is
(a) neutral (b) amphoteric (c) basic (d) acidic
What is the maximum number of emission lines when the excited electron of an H atom in n = 6 drops to the ground state?
Thanks a lot