In Rutherford’s experiment, generally the thin foil of heavy atoms, like gold, platinum etc. have been used to be bombarded by the α-particles. If the thin foil of light atoms like aluminium etc. is used, what difference would be observed from the above results?
In 1911, Rutherford performed alpha rays scattering experiment to demonstrate the structure of atom. Heavy atoms have a heavy nucleus carrying a large amount of positive charge.Hence,some alpha particles are easily deflected back on hitting the nucleus.Also a number of alpha particles are deflected through small angles because of large positive charge on the nucleus.If light atoms are use,their nuclei will be light & moreover,they will have small positive charge on the nucleus.Hence, the number of particles deflected back & those deflecte through some angle will be negligible.
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Explain why is there a phenomenal decrease in ionisation enthalpy from carbon to silicon?
What is the significance of the terms - ‘isolated gaseous atom’ and ‘ground state’ while defining the ionization enthalpy and electron gain enthalpy? Hint: Requirements for comparison purposes.
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
(a) KI3
(b) H2S4O6
(c) Fe3O4
(d) CH3CH2OH
(e) CH3COOH
Predict the products of electrolysis in each of the following:
(i) An aqueous solution of AgNO3 with silver electrodes
(ii) An aqueous solution AgNO3 with platinum electrodes
(iii) A dilute solution of H2SO4 with platinum electrodes
(iv) An aqueous solution of CuCl2 with platinum electrodes.
Enthalpy of combustion of carbon to CO2 is -393.5 kJ mol-1. Calculate the heat released upon formation of 35.2 g of CO2 from carbon and dioxygen gas.
Explain structures of diborane and boric acid.
What do you understand by
(a) inert pair effect
(b) allotropy and
(c) catenation?
What are the major differences between metals and non-metals?
How much time would it take to distribute one Avogadro number of wheat grains, if 1010 grains are distributed each second?
Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:
2BrCl (g) ↔ Br2 (g) + Cl2 (g) for which Kc= 32 at 500 K.
If initially pure BrCl is present at a concentration of 3.3 × 10–3 mol L–1, what is its molar concentration in the mixture at equilibrium?
Is there any mathematical?