Describe the shapes of BF3 and BH4-. Assign the hybridisation of boron in these species.
(i) BF3
As a result of its small size and high electronegativity, boron tends to form monomeric covalent halides. These halides have a planar triangular geometry. This triangular shape is formed by the overlapping of three sp2 hybridised orbitals of boron with sp orbitals of three halogen atoms. Boron is sp2 hybridised in BF3.
(ii) BH4-
Boron-hydride ion (BH4-) is formed by the sp3 hybridisation of boron orbitals. Therefore, it is a tetrahedral structure.
What happens when
(a) Borax is heated strongly,
(b) Boric acid is added to water,
(c) Aluminium is treated with dilute NaOH,
(d) BF3 is reacted with ammonia?
Give reasons:
(i) Conc. HNO3 can be transported in aluminium container.
(ii) A mixture of dilute NaOH and aluminium pieces is used to open drain.
(iii) Graphite is used as lubricant.
(iv) Diamond is used as an abrasive.
(v) Aluminium alloys are used to make aircraft body.
(vi) Aluminium utensils should not be kept in water overnight.
(vii) Aluminium wire is used to make transmission cables.
Write reactions to justify amphoteric nature of aluminium.
Why does boron trifluoride behave as a Lewis acid?
Discuss the pattern of variation in the oxidation states of
(i) B to Tl and (ii) C to Pb.
Write balanced equations for:
(i) BF3 + LiH →
(ii) B2H6 + H2O →
(iii) NaH + B2H6 →
(iv) H3BO3
(v) Al + NaOH →
(vi) B2H6 + NH3 →
How can you explain higher stability of BCl3 as compared to TlCl3?
A certain salt X, gives the following results.
(i) Its aqueous solution is alkaline to litmus.
(ii) It swells up to a glassy material Yon strong heating.
(iii) When conc. H2SO4 is added to a hot solution of X, white crystal of an acid Z separates out.
Write equations for all the above reactions and identify X, Y and Z.
(a) Classify following oxides as neutral, acidic, basic or amphoteric:
CO, B2O3, SiO2, CO2, Al2O3, PbO2, Tl2O3
(b) Write suitable chemical equations to show their nature.
Rationalise the given statements and give chemical reactions :
(i) Lead(II) chloride reacts with Cl2 to give PbCl4.
(ii) Lead(IV) chloride is highly unstable towards heat.
(iii) Lead is known not to form an iodide, PbI4.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
How much energy is required to ionise a H atom if the electron occupies n = 5 orbit? Compare your answer with the ionization enthalpy of H atom (energy required to remove the electron from n =1 orbit).
In the modern periodic table, the period indicates the value of:
(a) Atomic number
(b) Atomic mass
(c) Principal quantum number
(d) Azimuthal quantum number.
Which of the following statements related to the modern periodic table is incorrect?
(a) The p-block has 6 columns, because a maximum of 6 electrons can occupy all the orbitals in a p-shell.
(b) The d-block has 8 columns, because a maximum of 8 electrons can occupy all the orbitals in a d-subshell.
(c) Each block contains a number of columns equal to the number of electrons that can occupy that subshell.
(d) The block indicates value of azimuthal quantum number (l ) for the last subshell that received electrons in building up the electronic configuration.
An atom of an element contains 29 electrons and 35 neutrons.
Deduce (i) the number of protons and (ii) the electronic configuration of the element.
The quantum numbers of six electrons are given below. Arrange them in order of increasing energies. If any of these combination(s) has/have the same energy lists:
1. n = 4, l = 2, ml = –2 , ms = –1/2
2. n = 3, l = 2, ml= 1 , ms = +1/2
3. n = 4, l = 1, ml = 0 , ms = +1/2
4. n = 3, l = 2, ml = –2 , ms = –1/2
5. n = 3, l = 1, ml = –1 , ms= +1/2
6. n = 4, l = 1, ml = 0 , ms = +1/2
Which element do you think would have been named by
(i) Lawrence Berkeley Laboratory
(ii) Seaborg’s group?
Among the following pairs of orbitals which orbital will experience the larger effective nuclear charge?
(i) 2s and 3s,
(ii) 4d and 4f,
(iii) 3d and 3p
Use the data given in the following table to calculate the molar mass of naturally occurring argon isotopes:
Isotope |
Isotopic molar mass |
Abundance |
36Ar |
35.96755 gmol–1 |
0.337% |
38Ar |
37.96272 gmol–1 |
0.063% |
40Ar |
39.9624 gmol–1 |
99.600% |
What does atomic radius and ionic radius really mean to you?
At 450K, Kp= 2.0 × 1010/bar for the given reaction at equilibrium.
2SO2(g) + O2(g) ↔ 2SO3 (g)
What is Kc at this temperature ?