Which one of the following alkali metals gives hydrated salts?
(a) Li (b) Na (c) K (d) Cs
Smaller the size of an ion, the more highly it is hydrated. Among the given alkali metals, Li is the smallest in size. Also, it has the highest charge density and highest polarizing power. Hence, it attracts water molecules more strongly than the other alkali metals. As a result, it forms hydrated salts such as LiCl.2H2O. The other alkali metals are larger than Li and have weaker charge densities. Hence, they usually do not form hydrated salts.
Compare the alkali metals and alkaline earth metals with respect to
(i) ionization enthalpy
(ii) basicity of oxides and
(iii) solubility of hydroxides.
Compare the solubility and thermal stability of the following compounds of the alkali metals with those of the alkaline earth metals.
(a) Nitrates (b) Carbonates (c) Sulphates.
Discuss the various reactions that occur in the Solvay process.
Comment on each of the following observations:
(a) The mobilities of the alkali metal ions in aqueous solution are Li+ < Na+ < K+ < Rb+ < Cs+
(b) Lithium is the only alkali metal to form a nitride directly.
(c) E° for M2+(aq) (where M = Ca, Sr or Ba) is nearly constant.
Why are lithium salts commonly hydrated and those of the other alkali metal ions usually anhydrous?
State as to why
(a) a solution of Na2CO3 is alkaline ?
(b) alkali metals are prepared by electrolysis of their fused chlorides ?
(c) sodium is found to be more useful than potassium ?
When an alkali metal dissolves in liquid ammonia the solution can acquire different colours. Explain the reasons for this type of colour change.
In what ways lithium shows similarities to magnesium in its chemical behaviour?
Why is Li2CO3 decomposed at a lower temperature whereas Na2CO3 at higher temperature?
Find the oxidation state of sodium in Na2O2.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
2 × 108 atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is 2.4 cm.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Following results are observed when sodium metal is irradiated with different wavelengths.
Calculate (a) threshold wavelength and, (b) Planck’s constant.
λ (nm) | 500 | 450 |
400 |
v × 10–5 (cm s–1) | 2.55 | 4.35 | 5.35 |
Suggest the name of a Lewis acid other than anhydrous aluminium chloride which can be used during ethylation of benzene.
Would you expect the first ionization enthalpies for two isotopes of the same element to be the same or different? Justify your answer.
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
Distinguish between a sigma and a pi bond.
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
In astronomical observations, signals observed from the distant stars are generally weak. If the photon detector receives a total of 3.15 × 10–18 J from the radiations of 600 nm, calculate the number of photons received by the detector.
Write the expression for the equilibrium constant, Kc for each of the following reactions:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g)
(ii) 2Cu(NO3)2 (s) ↔ 2CuO (s) + 4NO2 (g) + O2 (g)
(iii) CH3COOC2H5(aq) + H2O(l) ↔ CH3COOH (aq) + C2H5OH (aq)
(iv) Fe3+ (aq) + 3OH– (aq) ↔ Fe(OH)3 (s)
(v) I2 (s) + 5F2 ↔ 2IF5