Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
(a) NaH2PO4
Let's assume oxidation number of P is x.
We know that,
Oxidation number of Na = +1
Oxidation number of H = +1
Oxidation number of O = -2
Then we have
1(+1) + 2(+1) + 1 (x) + 4(-2) = 0
⇒ 1 + 2 + x - 8 = 0
⇒ x - 5 = 0
⇒ x = + 5
Hence, oxidation number of P is +5
(b) NaHSO4
Let's assume oxidation number of S is x.
Oxidation number of Na = +1
Oxidation number of H = +1
Oxidation number of O = -2
Then we have:
1(+1) + 1(+1) + 1 (x) + 4(-2) = 0
⇒ 1 + 1 + x - 8 = 0
⇒ x-6 = 0
⇒ x = +6
Hence, oxidation number of S is +6
(c) H4P2O7
Let's assume oxidation number of P is x.
Oxidation number of H = +1
Oxidation number of O = -2
Then we have:
4(+1) + 2(x) + 7 (-2) = 0
⇒ 4 + 2x - 14 = 0
⇒ 2x - 10 = 0
⇒ 2x = +10
⇒ x = +5
Hence, Oxidation number of P is +5
(d) K2MnO4
Let's assume oxidation number of Mn is x.
Oxidation number of K = +1
Oxidation number of O = -2
Then we have:
2(+1) + 1(x) + 4 (-2) = 0
⇒ 2 + x - 8 = 0
⇒ x - 6 = 0
⇒ x = +6
Hence, Oxidation number of Mn is +6
(e) CaO2
Let's assume oxidation number of O is x.
Oxidation number of Ca = +2
Then we have:
1(+2) + 2(x) = 0
⇒ 2 + 2x = 0
⇒ 2x = -2
⇒ x = -1
Hence, Oxidation number of O is -1
(f) NaBH4
Let's assume oxidation number of B is x.
Oxidation number of Na = +1
Oxidation number of H = -1
Then we have:
1(+1) + 1(x) + 4(-1) = 0
⇒ 1 + x -4 = 0
⇒ x - 3 = 0
⇒ x = +3
Hence, Oxidation number of B is +3.
(g) H2S2O7
Let's assume oxidation number of S is x.
Oxidation number of O = -2
Oxidation number of H = +1
Then we have:
2(+1) + 2(x) + 7(-2) = 0
⇒ 2 + 2x - 14 = 0
⇒ 2x - 12 = 0
⇒ x = +6
Hence, Oxidation number of S is +6.
(h) KAl(SO4)2.12 H2O
Let's assume oxidation number of S is x.
Oxidation number of K = +1
Oxidation number of Al = +3
Oxidation number of O = -2
Oxidation number of H = +1
Then we have:
1(+1) + 1 (+3) + 2(x) + 8(-2) + 24(+1) + 12 (-2) = 0
⇒ 1 + 3 + 2x -16 +24 -24 = 0
⇒ 2x - 12 = 0
⇒ 2x = +12
⇒ x = +6
Hence, Oxidation number of S is +6.
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
(a) KI3
(b) H2S4O6
(c) Fe3O4
(d) CH3CH2OH
(e) CH3COOH
Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
(d) 2K(s) + F2(g) → 2K+F– (s)
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) P4(s) + OH – (aq) → PH3(g) + HPO2 – (aq)
(b) N2H4(l) + ClO3 – (aq) → NO(g) + Cl–(g)
(c) Cl2O7 (g) + H2O2(aq) → ClO – 2(aq) + O2(g) + H + (aq)
Fluorine reacts with ice and results in the change:
H2O(s) + F2(g) → HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Write the formulae for the following compounds:
(a) Mercury(II) chloride
(b) Nickel(II) sulphate
(c) Tin(IV) oxide
(d) Thallium(I) sulphate
(e) Iron(III) sulphate
(f) Chromium(III) oxide
While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
The compound AgF2 is an unstable compound. However, if formed, the compound acts as a very strong oxidizing agent. Why?
Calculate the oxidation number of sulphur, chromium and nitrogen in H2SO5, Cr2O2- 7 and NO– 3. Suggest structure of these compounds. Count for the fallacy.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
The reaction,
CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)
is at equilibrium at 1300 K in a 1L flask. It also contain 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
An atom of an element contains 29 electrons and 35 neutrons.
Deduce (i) the number of protons and (ii) the electronic configuration of the element.
When metal X is treated with sodium hydroxide, a white precipitate (A) is obtained, which is soluble in excess of NaOH to give soluble complex (B). Compound (A) is soluble in dilute HCl to form compound (C). The compound (A) when heated strongly gives (D), which is used to extract metal. Identify (X), (A), (B), (C) and (D). Write suitable equations to support their identities.
Consider the compounds, BCl3 and CCl4. How will they behave with water? Justify.
A large number of fish are suddenly found floating dead on a lake. There is no evidence of toxic dumping but you find an abundance of phytoplankton. Suggest a reason for the fish kill.
Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?
Arrange the following
(i) CaH2, BeH2 and TiH2 in order of increasing electrical conductance.
(ii) LiH, NaH and CsH in order of increasing ionic character.
(iii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy.
(iv) NaH, MgH2 and H2O in order of increasing reducing property.
It has been found that the pH of a 0.01M solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its pKa.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
Gud to disclose all the answers .anyway thanks