Question 2

A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

Answer

The given figure shows six equal amount of charges, q, at the vertices of a regular hexagon.

Where, Charge, q = 5 µC = 5 × 10^{- 6} C

Side of the hexagon, l = AB = BC = CD = DE = EF = FA = 10 cm

Distance of each vertex from centre O, d = 10 cm

Electric potential at point O,

Where,

_{}= Permittivity of free space

Therefore, the potential at the centre of the hexagon is 2.7 × 10^{6} V.

- Q:- A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?

(b) What is the net power consumed over a full cycle? - Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:- The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10
^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

">The work function of caesium metal is 2.14 eV. When light of frequency 6 ×10

^{14}Hz is incident on the metal surface, photoemission of electrons occurs. What is the(a) maximum kinetic energy of the emitted electrons,

(b) Stopping potential, and

(c) maximum speed of the emitted photoelectrons?

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of

(a) reflected, and

(b) refracted light? Refractive index of water is 1.33. - Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 10

^{5}NC^{-1 }per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7}Cm in the negative z-direction? - Q:-
Check that the ratio ke

^{2}/G m_{e}m_{p}is dimensionless. Look up a Table of Physical Constants and determine the value of this ratio. What does the ratio signify? - Q:- A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?">
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?

- Q:-
Consider a uniform electric field E = 3 × 10

^{3}îN/C.(a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane?

(b) What is the flux through the same square if the normal to its plane makes a 60° angle with the x-axis?

- Q:-
**(b)****(c)****(d)****(e)**Which among the curves shown in Fig. 1.35 cannot possibly represent electrostatic field lines?

**(a)****(b)****(c)****(d)****(e)** - Q:-
A cube of side

*b*has a charge*q*at each of its vertices. Determine the potential and electric field due to this charge array at the centre of the cube. - Q:-
**Answer the following questions:**(a) When a low flying aircraft passes overhead, we sometimes notice a slight shaking of the picture on our TV screen. Suggest a possible explanation.

(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?

">**Answer the following questions:**(a) When a low flying aircraft passes overhead, we sometimes notice a slight shaking of the picture on our TV screen. Suggest a possible explanation.

(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:- The energy flux of sunlight reaching the surface of the earth is 1.388 × 10
^{3}W/m^{2}. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.">The energy flux of sunlight reaching the surface of the earth is 1.388 × 10

^{3}W/m^{2}. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.

anshi
2019-10-10 20:29:24

Thanks and very nice

lalmexxian
2019-07-20 12:19:17

@nishma_ for a regular hexagon the internal angles are 60 degrees each which makes 6 equilateral triangle s inside the hexagon.

nishma
2019-06-28 20:10:08

l have adoubt that how the distance from cetre to each vertices is10cm

- NCERT Chapter

Copyright © 2013-14 saralstudy.com. All Rights Reserved. Site Powered by Kochan Group