Question 1

Two charges 5 x 10^{-8} C and -3 x 10^{-8} C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Answer

There are two charges,

Distance between the two charges, d = 16 cm = 0.16 m

Consider a point P on the line joining the two charges, as shown in the given figure.

r = Distance of point P from charge q_{1}

Let the electric potential (V) at point P be zero.

Potential at point P is the sum of potentials caused by charges q_{1} and q_{2} respectively.

Where,_{} = Permittivity of free space

For *V* = 0, equation (i) reduces to

Therefore, the potential is zero at a distance of 10 cm from the positive charge between the charges.

Suppose point P is outside the system of two charges at a distance s from the negative charge, where potential is zero,

as shown in the following figure.

For this arrangement, potential is given by,

For *V* = 0, equation (ii) reduces to

Therefore, the potential is zero at a distance of 40 cm from the positive charge outside the system of charges.

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m

^{2}.(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

- Q:-
In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm, what is the emf of the second cell?

- Q:-
**(a)**An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. Why not?**(b)**Explain why two field lines never cross each other at any point? - Q:-
(a) The peak voltage of an ac supply is 300 V. What is the rms voltage?

(b) The rms value of current in an ac circuit is 10 A. What is the peak current?

- Q:-
Two tiny spheres carrying charges 1.5 μC and 2.5 μC are located 30 cm apart. Find the potential and electric field:

(a) at the mid-point of the line joining the two charges, and

(b) at a point 10 cm from this midpoint in a plane normal to the line and passing through the mid-point.

- Q:-
A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of B at a point 2.5 m east of the wire.

- Q:-
A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m

^{2}.(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

- Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density.

Govind garasiya
2019-09-29 15:36:18

thanks for help

Monu
2019-05-13 21:20:28

That's so much unbelievable way of explanation of questions No 1 .

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.