At Saralstudy, we are providing you with the solution of Class 12th physics Electrostatic Potential and Capacitance according to the latest NCERT (CBSE) Book guidelines prepared by expert teachers. Here we are trying to give you a detailed answer to the questions of the entire topic of this chapter so that you can get more marks in your examinations by preparing the answers based on this lesson. We are trying our best to give you detailed answers to all the questions of all the topics of Class 12th physics Electrostatic Potential and Capacitance so that you can prepare for the exam according to your own pace and your speed.

The second chapter of Class 12 Physics introduces you to Electrostatic Potential and Capacitance. Different electric fields possess varying electrostatic potential. This chapter informs you about the electric potential and its applications, potential difference, equipotential surfaces, the electrical potential energy of charges in an electrostatic field, etc. This chapter is comprised of a number of formulae and terms associated with the electrostatic potential. There are questions related to this topic at the end of the chapter for you to work out.

Download pdf of NCERT Solutions for Class physics Chapter 2 Electrostatic Potential and Capacitance

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?

- Q:-
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
Two charges 5 x 10

^{-8}C and -3 x 10^{-8}C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

- Q:-
In Young’s double-slit experiment using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is K units. What is the intensity of light at a point where path difference is λ /3?

- Q:-
Answer carefully:

(a) Two large conducting spheres carrying charges Q

_{1}and Q_{2}are brought close to each other. Is the magnitude of electrostatic force between them exactly given by Q_{1}Q_{2}/4π∈_{0}r^{2}, where r is the distance between their centres?(b) If Coulomb's law involved 1/r

^{3}dependence (instead of 1/r^{2}), would Gauss's law be still true?(c) A small test charge is released at rest at a point in an electrostatic field configuration. Will it travel along the field line passing through that point?

(d) What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?

(e) We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?

(f) What meaning would you give to the capacitance of a single conductor?

(g) Guess a possible reason why water has a much greater dielectric constant (= 80) than say, mica (= 6).

- Q:-
What is the

(a) momentum,

(b) speed, and

(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.

- Q:-
(a) Two insulated charged copper spheres A and B have their centers separated by a distance of 50 cm. What is the mutual force of electrostatic repulsion if the charge on each is 6.5 × 10

^{−7}C? The radii of A and B are negligible compared to the distance of separation.(b) What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?

- Q:-
In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm, what is the emf of the second cell?

- Q:-
A system has two charges q

_{A}= 2.5 × 10^{−7}C and q_{B}= −2.5 × 10^{−7}C located at points A: (0, 0, − 15 cm) and B: (0, 0, + 15 cm), respectively. What are the total charge and electric dipole moment of the system? - Q:- A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
- Q:-
A silver wire has a resistance of 2.1 Ω at 27.5 °C, and a resistance of 2.7 Ω at 100 °C. Determine the temperature coefficient of resistivity of silver.

- Q:-
The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?

- Q:-
In a parallel plate capacitor with air between the plates, each plate has an area of 6 x 10-

^{3}m^{2}and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.