Atoms Question Answers: NCERT Class 12 Physics

Welcome to the Chapter 12 - Atoms, Class 12 Physics NCERT Solutions page. Here, we provide detailed question answers for Chapter 12 - Atoms. The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.

Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Atoms and excel in their exams. By going through these Atoms question answers, you can strengthen your foundation and improve your performance in Class 12 Physics. Whether you’re revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.

Exercise 1
A:

(a) The sizes of the atoms taken in Thomson’s model and Rutherford’s model have the same order of magnitude.

(b) In the ground state of Thomson’s model, the electrons are in stable equilibrium. However, in Rutherford’s model, the electrons always experience a net force.

(c) A classical atom based on Rutherford’s model is doomed to collapse.

(d) An atom has a nearly continuous mass distribution in Thomson’s model, but has a highly non-uniform mass distribution in Rutherford’s model.

(e) The positively charged part of the atom possesses most of the mass in both the models.


A:

Radius of the orbit of the Earth around the Sun, r = 1.5 × 1011 m

Orbital speed of the Earth, ν = 3 × 104 m/s

Mass of the Earth, m = 6.0 × 1024 kg

According to Bohr’s model, angular momentum is quantized and given as:

mvr = nh/2π

Where,

h = Planck’s constant = 6.62 × 10−34 Js

n = Quantum number

∴ n = mvr2π/h

= (2πx6x1024x3x104x1.5x1011)/(6.62x10-34)

= 25.61x1073 = 2.6 x 1074

Hence, the quanta number that characterizes the Earth’ revolution is 2.6 × 1074 .


A:

In the alpha-particle scattering experiment, if a thin sheet of solid hydrogen is used in place of a gold foil, then the scattering angle would not be large enough. This is because the mass of hydrogen (1.67 × 10 −27 kg) is less than the mass of incident α−particles (6.64 × 10 −27 kg). Thus, the mass of the scattering particle is more than the target nucleus (hydrogen).

As a result, the α−particles would not bounce back if solid hydrogen is used in the α-particle scattering experiment.


A:

Rydberg’s formula is given as: hc/λ = 21.76 x 10-19 [1/(n1)2 - 1/(n2)2]

Where, h = Planck’s constant = 6.6 × 10 −34 Js

c = Speed of light = 3 × 10 8 m/s

(n 1 and n 2 are integers)

The shortest wavelength present in the Paschen series of the spectral lines is given for values n 1 = 3 and n 2 = ∞.

hc/λ = 21.76 x 10-19 [1/(3)2 - 1/(∞)2]

∴ λ = 6.6 x 10-34 x 3 x 108 x 9 / 21.76 x 10-19 = 8.189x10-7 m = 818.9 nm

Hence, the shortest wavelength present is 818.9 nm.


A:

Separation of two energy levels in an atom, E = 2.3 eV = 2.3 × 1.6 × 10 −19 = 3.68 × 10 −19 J

Let ν be the frequency of radiation emitted when the atom transits from the upper level to the lower level.

We have the relation for energy as: E = hv

Where, h = Planck’s constant = 6.62 x 10-34 Js

V = E/h = 3.68 x 10-19 / 6.62 x 10-32 = 5.55 x 1014 Hz

Hence, the frequency of the radiation is 5.6 × 10 14 Hz.


A:

Ground state energy of hydrogen atom, E = − 13.6 eV

This is the total energy of a hydrogen atom. Kinetic energy is equal to the negative of the total energy.

Kinetic energy = − E = − (− 13.6) = 13.6 eV

Potential energy is equal to the negative of two times of kinetic energy.

Potential energy = − 2 × (13.6) = − 27 .2 eV


A:

For ground level, n 1 = 1

Let E1 be the energy of this level. It is known that E1 is related with n1 as:

E1 = -13.6/n12 eV

= -13.6/12 = -13.6 eV

The atom is excited to a higher level, n2 = 4.

Let E2 be the energy of this level.

∴ E2 = -13.6/n22 eV

= -13.6/42 = -13.6/16 eV

The amount of energy absorbed by the photon is given as:

E = E2 - E1

= (-13.6 /16) - (-13.6/1)

= 13.6 X 15/16 eV

= (13.6 X 15/16) X 1.6 X 10-19 = 2.04 X 10-18 J

For a photon of wavelengthλ, the expression of energy is written as:

E = hc/λ

Where,

h = Planck’s constant = 6.6 × 10−34 Js

c = Speed of light = 3 × 108 m/s

λ = hc/E

= (6.6x10-34x3x108)/(2.04x10-18)

= 9.7x10-8 m = 97 nm

And, frequency of a photon is given by the relation,

v = c/λ

= (3x108)/(9.7x10-8) ≈ 3.1 x 1015 Hz

Hence, the wavelength of the photon is 97 nm while the frequency is 3.1 × 1015 Hz.


A:

(a) Let ν1 be the orbital speed of the electron in a hydrogen atom in the ground state level, n1 = 1. For charge (e) of an electron, ν1 is given by the relation,

ν 1 = e2/n14πϵ0(h/2π) = e2/2ϵ0h

Where, e = 1.6 × 10−19 C

ϵ0 = Permittivity of free space = 8.85 × 10-12 N−1 C2 m−2

h = Planck’s constant = 6.62 × 10−34 Js

∴ ν1 = (1.6x10-19)2/2x8.85x10-12x6.62x10-34 = 0.0218 x 108 = 2.18 x 106 m/s

For level n2 = 2, we can write the relation for the corresponding orbital speed as:

ν2 = e2/n20h = (1.6x10-19)2/2x2x8.85x10-12x6.62x10-34 = 1.09 x 106 m/s

And, for n3 = 3, we can write the relation for the corresponding orbital speed as:

ν3 = e2/n30h = (1.6x10-19)2/3x2x8.85x10-12x6.62x10-34 = 7.27 x 105 m/s

Hence, the speed of the electron in a hydrogen atom in n = 1, n=2, and n=3 is 2.18 × 10 6 m/s, 1.09 × 10 6 m/s, 7.27 × 10 5 m/s respectively.

 

(b) Let T 1 be the orbital period of the electron when it is in level n1 = 1.

Orbital period is related to orbital speed as:

T1 = 2πr1 1

Where, r1 = Radius of the orbit

= n12h2ϵ0/πme2

h = Planck’s constant = 6.62 × 10−34 Js

e = Charge on an electron = 1.6 × 10−19 C

ϵ0 = Permittivity of free space = 8.85 × 10−12 N−1 C2 m−2

m = Mass of an electron = 9.1 × 10−31 kg

∴ T1 = 2πr11

= (2πx(1)2x(6.62x10-34)2x8.85x10-12)/2.18x106xπx9.1x10-31x(1.6x10-19)2

= 15.27x10-17 = 1.527x10-16 s

For level n 2 = 2, we can write the period as:

T2 = 2πr22

Where, r2 = Radius of the electron in n2 = 2

= (n2)2h2ϵ0/πme2

∴ T2 = 2πr22

= (2πx(2)2x(6.62x10-34)2x8.85x10-12)/1.09 x 106 x π x 9.1 x 10-31 x (1.6 x 10-19)2

= 1.22 x 10-15 s

And, for level n 3 = 3, we can write the period as:

T3 = 2πr33

Where, r 3 = Radius of the electron in n 3 = 3

= (n3)2h2ϵ0/πme2

∴ T3 = 2πr33

= (2πx(3)2x(6.62x10-34)2x8.85x10-12)/7.27 x 105 x π x 9.1 x 10-31 x (1.6 x 10-19)2

= 4.12 x 10-15 s

Hence, the orbital period in each of these levels is 1.52 × 10 −16 s, 1.22 × 10 −15 s, and 4.12 × 10 −15 s respectively.

 


A:

The radius of the innermost orbit of a hydrogen atom, r1 = 5.3 × 10−11 m.

Let r2 be the radius of the orbit at n = 2. It is related to the radius of the innermost orbit as:

r2 = (n)2r1

= 4 x 5.3 x 10-11 = 2.12 x 10-10 m

For n = 3, we can write the corresponding electron radius as:

r3 = (n)2 r1

= 9 x 5.3 x 10-11 = 4.77 x 10-10 m

Hence, the radii of an electron for n = 2 and n = 3 orbits are 2.12 × 10−10 m and 4.77 × 10−10 m respectively.

 

 


A:

It is given that the energy of the electron beam used to bombard gaseous hydrogen at room temperature is 12.5 eV.

Also, the energy of the gaseous hydrogen in its ground state at room temperature is −13.6 eV.

When gaseous hydrogen is bombarded with an electron beam, the energy of the gaseous hydrogen becomes −13.6 + 12.5 eV i.e., −1.1 eV.

Orbital energy is related to orbit level (n) as:

E = -13.6/(n)2 eV

For n = 3, E = -13.6/(9)2 = -1.5 eV

This energy is approximately equal to the energy of gaseous hydrogen. It can be concluded that the electron has jumped from n = 1 to n = 3 level.

During its de-excitation, the electrons can jump from n = 3 to n = 1 directly, which forms a line of the Lyman series of the hydrogen spectrum.

We have the relation for wave number for Lyman series as:

1/λ = Ry (1/12 - 1/n2)

Where,

Ry = Rydberg constant = 1.097 × 107 m−1

λ= Wavelength of radiation emitted by the transition of the electron

For n = 3, we can obtain λ as:

1/λ = 1.097 x 107 (1/12 - 1/32)

= 1.097x107(1-1/9) = 1.097x107x8/9

λ = 9/(8 x 1.097 x 107) = 102.55 nm

If the electron jumps from n = 2 to n = 1, then the wavelength of the radiation is given as:

1/λ = 1.097 x 107 (1/12 - 1/22)

= 1.097x107(1-1/4) = 1.097x107x3/4

λ = 4/(1.097x107x3) = 121.54nm

If the transition takes place from n = 3 to n = 2, then the wavelength of the radiation is given as:

1/λ = 1.097 x 107 (1/22 - 1/32)

= 1.097x107(1/4-1/9) = 1.097x107x5/36

λ = 36/(5x1.097x107) = 656.33 nm

This radiation corresponds to the Balmer series of the hydrogen spectrum.

Hence, in Lyman series, two wavelengths i.e., 102.5 nm and 121.5 nm are emitted. And in the Balmer series, one wavelength i.e., 656.33 nm is emitted.


Frequently Asked Questions about Atoms - Class 12 Physics

    • 1. How many questions are covered in Atoms solutions?
    • All questions from Atoms are covered with detailed step-by-step solutions including exercise questions, additional questions, and examples.
    • 2. Are the solutions for Atoms helpful for exam preparation?
    • Yes, the solutions provide comprehensive explanations that help students understand concepts clearly and prepare effectively for both board and competitive exams.
    • 3. Can I find solutions to all exercises in Atoms?
    • Yes, we provide solutions to all exercises, examples, and additional questions from Atoms with detailed explanations.
    • 4. How do these solutions help in understanding Atoms concepts?
    • Our solutions break down complex problems into simple steps, provide clear explanations, and include relevant examples to help students grasp the concepts easily.
    • 5. Are there any tips for studying Atoms effectively?
    • Yes, practice regularly, understand the concepts before memorizing, solve additional problems, and refer to our step-by-step solutions for better understanding.

Exam Preparation Tips for Atoms

The Atoms is an important chapter of 12 Physics. This chapter’s important topics like Atoms are often featured in board exams. Practicing the question answers from this chapter will help you rank high in your board exams.

Latest Blog Posts

Stay updated with our latest educational content and study tips

Understanding Procrastination and Why Students Delay Studying | How To Fix It

One of the challenging things students face nowadays is procrastination. It hinders productivity, making it difficult for students to score well. We often associate procrastination as just being lazy. But there’s more to it. Various studies have shown that procrastination stems from negative feelings such as stress and anxiety. Oftentimes, when we start, we think […]

Read More

Effective Tips to Avoid Nervous Breakdown during CBSE Board Exam

The CBSE Board Exam is a crucial milestone for millions of students across India. The Central Board of Secondary Education is famous for its imparting quality education and knowledge which reaches out to a large share of students. Also, it is important to know that, the CBSE board takes a slight unconventional route, since it […]

Read More

HSSC CET Haryana 2025: Admit Card, Exam Dates, Fees, and More

Haryana government issued a notification on 31st December 2024 through its Gazette notification No. 42/119/2019-5HR-II for CET Haryana 2024. The Common Eligibility Test (CET) for Haryana is a significant opportunity for candidates seeking government jobs in Group C and Group D posts. Below is a comprehensive summary of the key information you need to know […]

Read More

Why Sleep is Crucial for Memory Retention and Learning?

Sacrificing your sleep to study more is doing more damage than you think. While it may seem like utilizing every hour of the day for study leads to better outcomes, the reality is quite the opposite. Lack of proper rest can negatively impact your brain, especially when it comes to sleep and memory retention. You’ll […]

Read More

Benefits of Using Our NCERT Solutions for Class

When it comes to excelling in your studies, having a well-structured study guide can make a huge difference. Our NCERT Solutions for Class provide you with a comprehensive, easy-to-understand, and exam-focused resource that is specifically tailored to help you maximize your potential. Here are some of the key benefits of using our NCERT solutions for effective learning and high scores:

NCERT Solutions for Effective Exam Preparation

Preparing for exams requires more than just reading through textbooks. It demands a structured approach to understanding concepts, solving problems, and revising thoroughly. Here’s how our NCERT solutions can enhance your exam preparation:

  • Clear Understanding of Concepts: Our NCERT solutions are designed to break down complex topics into simple, understandable language, making it easier for students to grasp essential concepts in . This helps in building a solid foundation for each chapter, which is crucial for scoring high marks.
  • Step-by-Step Solutions: Each solution is presented in a detailed, step-by-step manner. This approach not only helps you understand how to reach the answer but also equips you with the right techniques to tackle similar questions in exams.
  • Access to Important Questions: We provide a curated list of important questions and commonly asked questions in exams. By practicing these questions, you can familiarize yourself with the types of problems that are likely to appear in the exams and gain confidence in answering them.
  • Quick Revision Tool: Our NCERT solutions serve as an excellent tool for last-minute revision. The solutions cover all key points, definitions, and explanations, ensuring that you have everything you need to quickly review before exams.

Importance of Structured Answers for Scoring Higher Marks

In exams, it's not just about getting the right answer—it's also about presenting it in a well-structured and logical way. Our NCERT solutions for Class are designed to guide you on how to write answers that are organized and effective for scoring high marks.

  • Precise and Concise Answers: Our solutions are crafted to provide answers that are to the point, without unnecessary elaboration. This ensures that you don't waste time during exams and focus on delivering accurate answers that examiners appreciate.
  • Step-Wise Marks Distribution: We understand that exams often allot marks based on specific steps or points. Our NCERT solutions break down each answer into structured steps to ensure you cover all essential points required for full marks.
  • Improved Presentation Skills: By following the format of our NCERT solutions, you learn how to present your answers in a systematic and logical manner. This helps in making your answers easy to read and allows the examiner to quickly identify key points, resulting in better scores.
  • Alignment with NCERT Guidelines: Since exams are often set in alignment with NCERT guidelines, our solutions are tailored to follow the exact format and language that is expected in exams. This can improve your chances of scoring higher by meeting the examiner's expectations.