Plant Growth and Development Question Answers: NCERT Class 11 Biology

Welcome to the Chapter 15 - Plant Growth and Development, Class 11 Biology NCERT Solutions page. Here, we provide detailed question answers for Chapter 15 - Plant Growth and Development. The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.

Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Plant Growth and Development and excel in their exams. By going through these Plant Growth and Development question answers, you can strengthen your foundation and improve your performance in Class 11 Biology. Whether you’re revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.

Exercise 1
A:

(a) Growth:

It is an irreversible and permanent process, accomplished by an increase in the size of an organ or organ parts or even of an individual cell.

(b) Differentiation:

It is a process in which the cells derived from the apical meristem (root and shoot apex) and the cambium undergo structural changes in the cell wall and the protoplasm, becoming mature to perform specific functions.

(c) Development:

It refers to the various changes occurring in an organism during its life cycle – from the germination of seeds to senescence.

(d) De-differentiation:

It is the process in which permanent plant cells regain the power to divide under certain conditions.

(e) Re-differentiation: It is the process in which de-differentiated cells become mature again and lose their capacity to divide.

(f) Determinate growth: It refers to limited growth. For example, animals and plant leaves stop growing after having reached maturity.

(g) Meristem: In plants, growth is restricted to specialised regions where active cell divisions take place. Such a region is called meristem. There are three types of meristems – apical meristem, lateral meristem, and intercalary meristem.

(h) Growth rate: It can be defined as the increased growth in plants per unit time.


A:

A defoliated plant will not respond to the photoperiodic cycle.

It is hypothesised that the hormonal substance responsible for flowering is formed in the leaves, subsequently migrating to the shoot apices and modifying them into flowering apices. Therefore, in the absence of leaves, light perception would not occur, i.e., the plant would not respond to light.


A:

(a) If GA3 is applied to rice seedlings, then the rice seedlings will exhibit internode-elongation and increase in height.

(b) If dividing cells stop differentiating, then the plant organs such as leaves and stem will not be formed. The mass of undifferentiated cell is called callus.

(c) If a rotten fruit gets mixed with unripe fruits, then the ethylene produced from the rotten fruits will hasten the ripening of the unripe fruits.

(d) If you forget to add cytokinin to the culture medium, then cell division, growth, and differentiation will not be observed.


A:

In plants, growth is said to have taken place when the amount of protoplasm increases. Measuring the growth of protoplasm involves many parameters such as the weight of the fresh tissue sample, the weight of the dry tissue sample, the differences in length, area, volume, and cell number measured during the growth period. Measuring the growth of plants using only one parameter does not provide enough information and hence, is insufficient for demonstrating growth.


A:

(a) Arithmetic growth

In arithmetic growth, one of the daughter cells continues to divide, while the other differentiates into maturity. The elongation of roots at a constant rate is an example of arithmetic growth.

(b) Geometric growth

Geometric growth is characterised by a slow growth in the initial stages and a rapid growth during the later stages. The daughter cells derived from mitosis retain the ability to divide, but slow down because of a limited nutrient supply.

(c) Sigmoid growth curve

The growth of living organisms in their natural environment is characterised by an S-shaped curve called sigmoid growth curve. This curve is divided into three phases – lag phase, log phase or exponential phase of rapid growth, and stationary phase.                                                             

Exponential growth

 

 

 

 

 

 



Exponential growth can be expressed as:

W1 = W0en

Where,

W1 = Final size

W0 = Initial size

r = Growth rate

t= Time of growth

e = Base of natural logarithms

(d) Absolute and relative growth rates

Absolute growth rate refers to the measurement and comparison of total growth per unit time.

Relative growth rate refers to the growth of a particular system per unit time, expressed on a common basis.


A:

Plant growth regulators are the chemical molecules secreted by plants affecting the physiological attributes of a plant. There are five main plant growth regulators. These are:

(i) Auxins

(ii) Gibberellic acid

(iii) Cytokinins

(iv) Ethylene

(v) Abscisic acid

(i) Auxins Discovery: The first observations regarding the effects of auxins were made by Charles Darwin and Francis Darwin wherein they saw the coleoptiles of canary gross bending toward a unilateral source of light.

It was concluded after a series of experiments that some substance produced at the tip of coleoptiles was responsible for the bending. Finally, this substance was extracted as auxins from the tips of coleoptiles in oat seedlings.

Physiological functions:

1. They control plant cell-growth.

2. They cause the phenomenon of apical dominance.

3. They control division in the vascular cambium and xylem differentiation.

4. They induce parthenocarpy and prevent abscission of leaves and fruits.

Horticultural applications:

1. They are used as the rooting hormones in stem cuttings.

2. 2-4 D is used weedicide to kill broadleaf, dicotyledonous weeds.

3. They induce parthenocarpy in tomatoes.

4. They promote flowering in pineapple and litchi.

(ii) Gibberellic acid

Discovery:

Bakane or the “foolish rice seedling” disease was first observed by Japanese farmers. In this disease, rice seedlings appear to grow taller than natural plants, and become slender and pale green. Later, after several experiments, it was found that this condition was caused by the infection from a certain fungus Gibberella fujikuroi. The active substance was isolated and identified as gibberellic acid.

Physiological functions:

1. It causes elongation of internodes.

2. It promotes bolting in rosette plants.

3. It helps in inducing seed germination by breaking seed dormancy and initiating the synthesis of hydrolases enzymes for digesting reserve food.

Horticultural applications:

1. It helps in increasing the sugar content in sugarcane by increasing the length of the internodes.

2. It increases the length of grape stalks.

3. It improves the shape of apple.

4. It delays senescence.

5. It hastens maturity and induces seed-production in juvenile conifers.

(iii) Cytokinins

Discovery:

Through their experimental observations, F. Skoog and his co-workers found that the tobacco callus differentiated when extracts of vascular tissues, yeast extract, coconut milk, or DNA were added to the culture medium. This led to the discovery of cytokinins.

Physiological functions:

1. They promote the growth of lateral branches by inhibiting apical dominance.

2. They help in the production of new leaves, chloroplasts, and adventitious shoots.

3. They help in delaying senescence by promoting nutrient mobilisation.

Horticultural applications:

1. They are used for preventing apical dominance.

2. They are used for delaying senescence in leaves.

(iv) Ethylene

Discovery:

It was observed that unripe bananas ripened faster when stored with ripe bananas. Later, the substance promoting the ripening was found to be ethylene.

Physiological functions:

1. It helps in breaking seed and bud dormancy.

2. It promotes rapid internode-elongation in deep-water rice plants.

3. It promotes root-growth and formation of root hairs.

4. It promotes senescence and abscission of leaves and flowers.

5. It hastens the respiration rate in fruits and enhances fruit ripening.

Horticultural applications:

1. It is used to initiate flowering and synchronising the fruit set in pineapples.

2. It induces flowering in mango.

3. Ethephon is used to ripen the fruits in tomatoes and apples, and accelerate the abscission of flowers and leaves in cotton, cherry, and walnut.

4. It promotes the number of female flowers in cucumbers.

(v) Abscisic acid

Discovery:

During the mid 1960s, inhibitor-B, abscission II, and dormin were discovered by three independent researchers. These were later on found to be chemically similar and were thereafter called ABA (Abscisic acid).

Physiological functions:

1. It acts as an inhibitor to plant metabolism.

2. It stimulates stomatal closure during water stress.

3. It induces seed dormancy.

4. It induces abscission of leaves, fruits, and flowers.

Horticultural application:

It induces seed dormancy in stored seeds.


A:

Photoperiodism refers to the response of plants with respect to the duration of light (i.e., period of day and night). On the basis of its response to the duration of light, a plant is classified as a short-day plant, a long-day plant, or a day-neutral plant. Short-day plants flower when they are exposed to light for a period less than the critical day-length (for example: Chrysanthemum). Long-day plants flower when they are exposed to light for a period more than the critical day-length (for example: radish). When no marked correlation is observed between the duration of exposure to light and the flowering response, plants are termed as day-neutral plants (for example: tomato).

It is hypothesised that the hormonal substance responsible for flowering is formed in the leaves, subsequently migrating to the shoot apices and modifying them into flowering apices. Photoperiodism helps in studying the response of flowering in various crop plants with respect to the duration of exposure to light.

Vernalisation is the cold-induced flowering in plants. In some plants (such as the winter varieties of wheat and rye and biennials such as carrot and cabbage), exposure to low temperature is necessary for flowering to be induced. The winter varieties of rye and wheat are planted in autumn. They remain in the seedling stage during winters and flower during summers. However, when these varieties are sown in spring, they fail to flower. Similar response is seen in cabbage and radish.


A:

Abscisic acid is called stress hormones as it induces various responses in plants against stress conditions.

It increases the tolerance of plants toward various stresses. It induces the closure of the stomata during water stress. It promotes seed dormancy and ensures seed germination during favourable conditions. It helps seeds withstand desiccation. It also helps in inducing dormancy in plants at the end of the growing season and promotes abscission of leaves, fruits, and flowers.


A:

Growth and development in higher plants is referred to as being open. This is because various meristems, having the capacity for continuously dividing and producing new cells, are present at different locations in these plant bodies.


A:

The flowering response in short-day plants and long-day plants is dependent on the durations for which these plants are exposed to light. The short-day plant and long-day plant can flower at the same place, provided they have been given an adequate photoperiod.


A:

(a) Induce rooting in a twig – Auxins

(b) Quickly ripen a fruit – Ethylene

(c) Delay leaf senescence – Cytokinins

(d) Induce growth in axillary buds – Cytokinins

(e) ‘Bolt’ a rosette plant – Gibberellic acid

(f) Induce immediate stomatal closure in leaves – Abscisic acid


Frequently Asked Questions about Plant Growth and Development - Class 11 Biology

    • 1. How many questions are covered in Plant Growth and Development solutions?
    • All questions from Plant Growth and Development are covered with detailed step-by-step solutions including exercise questions, additional questions, and examples.
    • 2. Are the solutions for Plant Growth and Development helpful for exam preparation?
    • Yes, the solutions provide comprehensive explanations that help students understand concepts clearly and prepare effectively for both board and competitive exams.
    • 3. Can I find solutions to all exercises in Plant Growth and Development?
    • Yes, we provide solutions to all exercises, examples, and additional questions from Plant Growth and Development with detailed explanations.
    • 4. How do these solutions help in understanding Plant Growth and Development concepts?
    • Our solutions break down complex problems into simple steps, provide clear explanations, and include relevant examples to help students grasp the concepts easily.
    • 5. Are there any tips for studying Plant Growth and Development effectively?
    • Yes, practice regularly, understand the concepts before memorizing, solve additional problems, and refer to our step-by-step solutions for better understanding.

Exam Preparation Tips for Plant Growth and Development

The Plant Growth and Development is an important chapter of 11 Biology. This chapter’s important topics like Plant Growth and Development are often featured in board exams. Practicing the question answers from this chapter will help you rank high in your board exams.

Latest Blog Posts

Stay updated with our latest educational content and study tips

Understanding Procrastination and Why Students Delay Studying | How To Fix It

One of the challenging things students face nowadays is procrastination. It hinders productivity, making it difficult for students to score well. We often associate procrastination as just being lazy. But there’s more to it. Various studies have shown that procrastination stems from negative feelings such as stress and anxiety. Oftentimes, when we start, we think […]

Read More

Effective Tips to Avoid Nervous Breakdown during CBSE Board Exam

The CBSE Board Exam is a crucial milestone for millions of students across India. The Central Board of Secondary Education is famous for its imparting quality education and knowledge which reaches out to a large share of students. Also, it is important to know that, the CBSE board takes a slight unconventional route, since it […]

Read More

HSSC CET Haryana 2025: Admit Card, Exam Dates, Fees, and More

Haryana government issued a notification on 31st December 2024 through its Gazette notification No. 42/119/2019-5HR-II for CET Haryana 2024. The Common Eligibility Test (CET) for Haryana is a significant opportunity for candidates seeking government jobs in Group C and Group D posts. Below is a comprehensive summary of the key information you need to know […]

Read More

Why Sleep is Crucial for Memory Retention and Learning?

Sacrificing your sleep to study more is doing more damage than you think. While it may seem like utilizing every hour of the day for study leads to better outcomes, the reality is quite the opposite. Lack of proper rest can negatively impact your brain, especially when it comes to sleep and memory retention. You’ll […]

Read More

Benefits of Using Our NCERT Solutions for Class

When it comes to excelling in your studies, having a well-structured study guide can make a huge difference. Our NCERT Solutions for Class provide you with a comprehensive, easy-to-understand, and exam-focused resource that is specifically tailored to help you maximize your potential. Here are some of the key benefits of using our NCERT solutions for effective learning and high scores:

NCERT Solutions for Effective Exam Preparation

Preparing for exams requires more than just reading through textbooks. It demands a structured approach to understanding concepts, solving problems, and revising thoroughly. Here’s how our NCERT solutions can enhance your exam preparation:

  • Clear Understanding of Concepts: Our NCERT solutions are designed to break down complex topics into simple, understandable language, making it easier for students to grasp essential concepts in . This helps in building a solid foundation for each chapter, which is crucial for scoring high marks.
  • Step-by-Step Solutions: Each solution is presented in a detailed, step-by-step manner. This approach not only helps you understand how to reach the answer but also equips you with the right techniques to tackle similar questions in exams.
  • Access to Important Questions: We provide a curated list of important questions and commonly asked questions in exams. By practicing these questions, you can familiarize yourself with the types of problems that are likely to appear in the exams and gain confidence in answering them.
  • Quick Revision Tool: Our NCERT solutions serve as an excellent tool for last-minute revision. The solutions cover all key points, definitions, and explanations, ensuring that you have everything you need to quickly review before exams.

Importance of Structured Answers for Scoring Higher Marks

In exams, it's not just about getting the right answer—it's also about presenting it in a well-structured and logical way. Our NCERT solutions for Class are designed to guide you on how to write answers that are organized and effective for scoring high marks.

  • Precise and Concise Answers: Our solutions are crafted to provide answers that are to the point, without unnecessary elaboration. This ensures that you don't waste time during exams and focus on delivering accurate answers that examiners appreciate.
  • Step-Wise Marks Distribution: We understand that exams often allot marks based on specific steps or points. Our NCERT solutions break down each answer into structured steps to ensure you cover all essential points required for full marks.
  • Improved Presentation Skills: By following the format of our NCERT solutions, you learn how to present your answers in a systematic and logical manner. This helps in making your answers easy to read and allows the examiner to quickly identify key points, resulting in better scores.
  • Alignment with NCERT Guidelines: Since exams are often set in alignment with NCERT guidelines, our solutions are tailored to follow the exact format and language that is expected in exams. This can improve your chances of scoring higher by meeting the examiner's expectations.