At Saralstudy, we are providing you with the solution of Class 11th physics Oscillations according to the latest NCERT (CBSE) Book guidelines prepared by expert teachers. Here we are trying to give you a detailed answer to the questions of the entire topic of this chapter so that you can get more marks in your examinations by preparing the answers based on this lesson. We are trying our best to give you detailed answers to all the questions of all the topics of Class 11th physics Oscillations so that you can prepare for the exam according to your own pace and your speed.

- Q:-
State the number of significant figures in the following:

(a) 0.007 m

^{2}(b) 2.64 x 10

^{24}kg(c) 0.2370 g cm

^{-3}(d) 6.320 J

(e) 6.032 N m

^{-2}(f) 0.0006032 m

^{2} - Q:-
A physical quantity P is related to four observables a, b, c and d as follows :

The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%, respectively. What is the percentage error in the quantity P ? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result ?

- Q:-
Fill in the blanks by suitable conversion of units:

(a) 1 kg m

^{2}s^{–2}= ....g cm^{2 }s^{–2 }(b) 1 m =..... ly

(c) 3.0 m s

^{–2}=.... km h^{–2}(d) G = 6.67 × 10

^{–11}N m^{2}(kg)^{–2}=.... (cm)3s^{–2}g^{–1}. - Q:- Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed

(b) a cork of mass 10 g floating on water

(c) a kite skillfully held stationary in the sky

(d) a car moving with a constant velocity of 30 km/h on a rough road

(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields. - Q:- In which of the following examples of motion, can the body be considered approximately a point object:

(a) a railway carriage moving without jerks between two stations.

(b) a monkey sitting on top of a man cycling smoothly on a circular track.

(c) a spinning cricket ball that turns sharply on hitting the ground.

(d) a tumbling beaker that has slipped off the edge of a table. - Q:-
The driver of a three-wheeler moving with a speed of 36 km/h sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child. What is the average retarding force on the vehicle? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg.

- Q:-
A steam engine delivers 5.4 x 10

^{8}J of work per minute and services 3.6 x 10^{9 }J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute? - Q:- (a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature (T1 +T2)/2. (b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat. (c) Air pressure in a car tyre increases during driving. (d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.
- Q:- Explain why (a) The blood pressure in humans is greater at the feet than at the brain (b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km (c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area.
- Q:- Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg,

(a) just after it is dropped from the window of a stationary train,

(b) just after it is dropped from the window of a train running at a constant velocity of 36 km/h,

(c) just after it is dropped from the window of a train accelerating with 1 m s 2,

(d) lying on the floor of a train which is accelerating with 1 m s 2, the stone being at rest relative to the train. Neglect air resistance throughout.

- Q:-
From a certain apparatus, the diffusion rate of hydrogen has an average value of 28.7 cm

^{3}s^{-1}. The diffusion of another gas under the same conditions is measured to have an average rate of 7.2 cm^{3}s^{-1}. Identify the gas.[Hint:Use Graham's law of diffusion: R

_{1}/R_{2}= (M_{2}/M_{1})^{1/2}, where R_{1}, R_{2}are diffusion rates of gases 1 and 2, and M_{1}and M_{2 }their respective molecular masses. The law is a simple consequence of kinetic theory.] - Q:-
It is a well known fact that during a total solar eclipse the disk of the moon almost completely covers the disk of the Sun. From this fact and from the information you can gather from examples 2.3 and 2.4, determine the approximate diameter of the moon.

- Q:- Explain this statement clearly:

To call a dimensional quantity large or small is meaningless without specifying a standard for comparison. In view of this, reframe the following statements wherever necessary:

(a) atoms are very small objects

(b) a jet plane moves with great speed

(c) the mass of Jupiter is very large

(d) the air inside this room contains a large number of molecules

(e) a proton is much more massive than an electron

(f) the speed of sound is much - Q:-
The unit of length convenient on the atomic scale is known as an angstrom and is denoted by Å : 1Å = 10

^{-10}m. The size of a hydrogen atom is about 0.5 Å what is the total atomic volume in m^{3}of a mole of hydrogen atoms? - Q:-
On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

- Q:-
State the number of significant figures in the following:

(a) 0.007 m

^{2}(b) 2.64 x 10

^{24}kg(c) 0.2370 g cm

^{-3}(d) 6.320 J

(e) 6.032 N m

^{-2}(f) 0.0006032 m

^{2} - Q:-
A great physicist of this century (P.A.M. Dirac) loved playing with numerical values of Fundamental constants of nature. This led him to an interesting observation. Dirac found that from the basic constants of atomic physics (c, e, mass of electron, mass of proton) and the gravitational constant G, he could arrive at a number with the dimension of time. Further, it was a very large number, its magnitude being close to the present estimate on the age of the universe (~15 billion years). From the table of fundamental constants in this book, try to see if you too can construct this number (or any other interesting number you can think of). If its coincidence with the age of the universe were significant, what would this imply for the constancy of fundamental constants?

- Q:-
A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km h

^{ –1}. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km h^{–1}. What is thea) magnitude of average velocity, and

b) average speed of the man over the interval of time (i) 0 to 30 min, (ii) 0 to 50 min, (iii) 0 to 40 min?

[Note: You will appreciate from this exercise why it is better to define average speed as total path length divided by time, and not as magnitude of average velocity. You would not like to tell the tired man on his return home that his average speed was zero!]

- Q:- Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg,

(a) just after it is dropped from the window of a stationary train,

(b) just after it is dropped from the window of a train running at a constant velocity of 36 km/h,

(c) just after it is dropped from the window of a train accelerating with 1 m s 2,

(d) lying on the floor of a train which is accelerating with 1 m s 2, the stone being at rest relative to the train. Neglect air resistance throughout. - Q:-
One mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen? (Take the size of hydrogen molecule to be about 1Å). Why is this ratio so large?

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.