At Saralstudy, we are providing you with the solution of Class 11th physics Laws of Motion according to the latest NCERT (CBSE) Book guidelines prepared by expert teachers. Here we are trying to give you a detailed answer to the questions of the entire topic of this chapter so that you can get more marks in your examinations by preparing the answers based on this lesson. We are trying our best to give you detailed answers to all the questions of all the topics of Class 11th physics Laws of Motion so that you can prepare for the exam according to your own pace and your speed.

- Q:-
State the number of significant figures in the following:

(a) 0.007 m

^{2}(b) 2.64 x 10

^{24}kg(c) 0.2370 g cm

^{-3}(d) 6.320 J

(e) 6.032 N m

^{-2}(f) 0.0006032 m

^{2} - Q:-
A physical quantity P is related to four observables a, b, c and d as follows :

The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%, respectively. What is the percentage error in the quantity P ? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result ?

- Q:-
Fill in the blanks by suitable conversion of units:

(a) 1 kg m

^{2}s^{–2}= ....g cm^{2 }s^{–2 }(b) 1 m =..... ly

(c) 3.0 m s

^{–2}=.... km h^{–2}(d) G = 6.67 × 10

^{–11}N m^{2}(kg)^{–2}=.... (cm)3s^{–2}g^{–1}. - Q:- Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed

(b) a cork of mass 10 g floating on water

(c) a kite skillfully held stationary in the sky

(d) a car moving with a constant velocity of 30 km/h on a rough road

(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields. - Q:- In which of the following examples of motion, can the body be considered approximately a point object:

(a) a railway carriage moving without jerks between two stations.

(b) a monkey sitting on top of a man cycling smoothly on a circular track.

(c) a spinning cricket ball that turns sharply on hitting the ground.

(d) a tumbling beaker that has slipped off the edge of a table. - Q:-
The driver of a three-wheeler moving with a speed of 36 km/h sees a child standing in the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the child. What is the average retarding force on the vehicle? The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg.

- Q:-
A steam engine delivers 5.4 x 10

^{8}J of work per minute and services 3.6 x 10^{9 }J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute? - Q:- (a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature (T1 +T2)/2. (b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat. (c) Air pressure in a car tyre increases during driving. (d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.
- Q:- Explain why (a) The blood pressure in humans is greater at the feet than at the brain (b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km (c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area.
- Q:- Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg,

(a) just after it is dropped from the window of a stationary train,

(b) just after it is dropped from the window of a train running at a constant velocity of 36 km/h,

(c) just after it is dropped from the window of a train accelerating with 1 m s 2,

(d) lying on the floor of a train which is accelerating with 1 m s 2, the stone being at rest relative to the train. Neglect air resistance throughout.

- Q:- Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed

(b) a cork of mass 10 g floating on water

(c) a kite skillfully held stationary in the sky

(d) a car moving with a constant velocity of 30 km/h on a rough road

(e) a high-speed electron in space far from all material objects, and free of electric and magnetic fields. - Q:-
The speed-time graph of a particle moving along a fixed direction is shown in Fig. 3.28. Obtain the distance traversed by the particle between (a) t = 0 s to 10 s, (b) t = 2 s to 6 s.

(Fig. 3.28)

What is the average speed of the particle over the intervals in (a) and (b)?

- Q:-
Fill in the blanks by suitable conversion of units:

(a) 1 kg m

^{2}s^{–2}= ....g cm^{2 }s^{–2 }(b) 1 m =..... ly

(c) 3.0 m s

^{–2}=.... km h^{–2}(d) G = 6.67 × 10

^{–11}N m^{2}(kg)^{–2}=.... (cm)3s^{–2}g^{–1}. - Q:-
Suggest a suitable physical situation for each of the following graphs (Fig 3.22):

**(a)**(Figure 3.22)

- Q:-
On a two-lane road, car A is travelling with a speed of 36 km h

^{–1}. Two cars B and C approach car A in opposite directions with a speed of 54 km h^{–1}each. At a certain instant, when the distance AB is equal to AC, both being 1 km, B decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident? - Q:-
A police van moving on a highway with a speed of 30 km h

^{-1}fires a bullet at a thief's car speeding away in the same direction with a speed of 192 km h^{-1}. If the muzzle speed of the bullet is 150 m s^{-1}, with what speed does the bullet hit the thief's car ? (Note: Obtain that speed which is relevant for damaging the thief's car). - Q:-
A woman starts from her home at 9.00 am, walks with a speed of 5 km h

^{-1}on a straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and returns home by an auto with a speed of 25 km h^{-1}. Choose suitable scales and plot the x-t graph of her motion. - Q:-
Figure 3.21 shows the x-t plot of one-dimensional motion of a particle. Is it correct to say from the graph that the particle moves in a straight line for t < 0 and on a parabolic path for t > 0? If not, suggest a suitable physical context for this graph.

- Q:-
Look at the graphs (a) to (d) (Fig. 3.20) carefully and state, with reasons, which of these cannot possibly represent one-dimensional motion of a particle.

**(a)** - Q:-
In Exercises 3.13 and 3.14, we have carefully distinguished between average speed and magnitude of average velocity. No such distinction is necessary when we consider instantaneous speed and magnitude of velocity. The instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?

- NCERT Chapter

Copyright © 2020 saralstudy.com. All Rights Reserved.