Use molecular orbital theory to explain why the Be2 molecule does not exist.
The electronic configuration of Beryllium is 1s2 2s2.
From the electronic configuration it is clear that there is no singly filled atomic orbital present in beryllium.
Without the half- filled orbital, the overlapping is not possible, therefore Be2 molecule does not exist.
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Describe the change in hybridisation (if any) of the Al atom in the following reaction.
Draw the Lewis structures for the following molecules and ions: H2S, SiCl4, BeF2, , HCOOH
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
In Milikan’s experiment, static electric charge on the oil drops has been obtained by shining X-rays.
If the static electric charge on the oil drop is –1.282 × 10–18C, calculate the number of electrons present on it.
The equilibrium constant for a reaction is 10. What will be the value of ΔG0 ? R = 8.314 JK–1 mol–1, T = 300 K.
Explain why is sodium less reactive than potassium?
A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
What characteristics do you expect from an electron-deficient hydride with respect to its structure and chemical reactions?
Electromagnetic radiation of wavelength 242 nm is just sufficient to ionise the sodium atom. Calculate the ionisation energy of sodium in kJ mol–1.
Calculate the enthalpy change for the process
CCl4(g) → C(g) + 4 Cl(g)
and calculate bond enthalpy of C – Cl in CCl4(g).
ΔvapH0(CCl4) = 30.5 kJ mol–1.
ΔfH0 (CCl4) = –135.5 kJ mol–1.
ΔaH0 (C) = 715.0 kJ mol–1 , where ΔaH0 is enthalpy of atomisation
ΔaH0 (Cl2) = 242 kJ mol–1
How can the production of dihydrogen, obtained from ‘coal gasification’, be increased?
Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
N2(g) + H2(g) → 2NH3(g)
(i) Calculate the mass of ammonia produced if 2.00 × 103 g dinitrogen reacts with 1.00 × 103 g of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii) If yes, which one and what would be its mass?
What do you understand by the term 'auto-protolysis' of water? What is its significance?
thank you
It is so helpful
Very helpful..... Thank you
little bit helpful
Simple to understand..!ð
Good explanations it really help me to understand
Nandri
Thanksð
Thankyou so muchðª
It is so helpful to .I pleased to u to make more questions and answers to help us like so