Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5), (–3, –1, 6), (2, –4, –7)
The x-coordinate, y-coordinate, and z-coordinate of point (1, 2, 3) are all positive. Therefore, this point lies in octant I.
The x-coordinate, y-coordinate, and z-coordinate of point (4, –2, 3) are positive, negative, and positive respectively. Therefore, this point lies in octant IV.
The x-coordinate, y-coordinate, and z-coordinate of point (4, –2, –5) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.
The x-coordinate, y-coordinate, and z-coordinate of point (4, 2, –5) are positive, positive, and negative respectively. Therefore, this point lies in octant V.
The x-coordinate, y-coordinate, and z-coordinate of point (–4, 2, –5) are negative, positive, and negative respectively. Therefore, this point lies in octant VI.
The x-coordinate, y-coordinate, and z-coordinate of point (–4, 2, 5) are negative, positive, and positive respectively. Therefore, this point lies in octant II.
The x-coordinate, y-coordinate, and z-coordinate of point (–3, –1, 6) are negative, negative, and positive respectively. Therefore, this point lies in octant III.
The x-coordinate, y-coordinate, and z-coordinate of point (2, –4, –7) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Describe the sample space for the indicated experiment: A die is thrown two times.
Give three examples of sentences which are not statements. Give reasons for the answers.
Find the sum to n terms in the geometric progression 1,-a, a2,-a3, ... (if a ≠ -1)
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Find the sum to n terms in the geometric progression x3, x5, x7 ... (if x ≠ ±1)
very nice and very easy questions of 3D