-
Q1 Solve each of the following equations:
x2 + 3 = 0Ans: Our experts will give the answer soon.
Welcome to the Chapter 5 - Complex Number & Quadratic Equations, Class 11 Mathematics - NCERT Solutions page. Here, we provide detailed question answers for Chapter 5 - Complex Number & Quadratic Equations.The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics and excel in their exams. By going through these Complex Number & Quadratic Equations question answers, you can strengthen your foundation and improve your performance in Class 11 Mathematics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
Upto now, we are very much familiar with real numbers. But in solving quadratic equations, real numbers have no answer about -1 i.e, square root of negative numbers. Set of real numbers is a subset of complex numbers. Complex numbers give answers to these questions. This chapter consists of algebraic properties of complex numbers, argand plane , polar representation of complex numbers , fundamental theorem of algebra , Solution of quadratic equations in complex number systems. Square root of a complex number.
Q1 | Solve each of the following equations: x2 + 3 = 0 |
Ans: | Our experts will give the answer soon. |
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
A die is thrown. Describe the following events:
(i) A: a number less than 7 (ii) B: a number greater than 7 (iii) C: a multiple of 3
(iv) D: a number less than 4 (v) E: an even number greater than 4 (vi) F: a number not less than 3
Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F’, F’
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, – 4) and B (8, 0).
If f is a function satisfying f(x +y) = f(x) f(y) for all x,y N such that f(1) = 3
and , find the value of n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the 20th and nthterms of the G.P.