Give three examples of sentences which are not statements. Give reasons for the answers.
The three examples of sentences, which are not statements, are as follows.
(i) He is a doctor.
It is not evident from the sentence as to whom ‘he’ is referred to. Therefore, it is not a statement.
(ii) Geometry is difficult.
This is not a statement because for some people, geometry can be easy and for some others, it can be difficult.
(iii) Where is she going?
This is a question, which also contains ‘she’, and it is not evident as to who ‘she’ is. Hence, it is not a statement.
Solve 24x < 100, when
(i) x is a natural number. (ii) x is an integer.
Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7), (5, – 5) and (– 4, –2). Also, find its area.
A point is on the x-axis. What are its y-coordinates and z-coordinates?
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
(i) repetition of the digits is allowed?
(ii) repetition of the digits is not allowed?
Find the equation of the circle with centre (0, 2) and radius 2
Describe the sample space for the indicated experiment: A coin is tossed three times.
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A×B).
The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
A point is in the XZ-plane. What can you say about its y-coordinate?
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If the pth, qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq-rbr-pcp-q=1
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015 …
The sum of first three terms of a G.P. is and their product is 1. Find the common ratio and the terms.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.