If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Here, α = 90° , β = 60°
Let γ = θº, where 0 ≤ θº ≤ π
Now cos2 α + cos2 β + cos2 γ = 1
⇒ cos2 90° + cos2 60° + cos2 θº = 1
⇒ 02 + (½)2 + cos2 θº = 1
cos2 θ = 1- 1/4 = 3/4
cos θ = ± √3 / 2
θ = π / 6 or 5π / 6
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0
Letbe a function defined as
. The inverse of f is map g: Range
(A)
(B)
(C)
(D)
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?