- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
Check the injectivity and surjectivity of the following functions:

(i)

*f*:**N → N**given by*f(x*) = x^{2}(ii)

*f*:**Z → Z**given by*f(x)*= x^{2}(iii)

*f*:**R → R**given by*f(x)*= x^{2}(iv)

*f*:**N → N**given by*f(x)*= x^{3}(v)

*f*:**Z → Z**given by*f(x)*= x^{3 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:- If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

- Q:- Integrals (ax + b)
^{2} - Q:-
State with reason whether following functions have inverse

(i)

*f*: {1, 2, 3, 4} → {10} with*f*= {(1, 10), (2, 10), (3, 10), (4, 10)}(ii)

*g*: {5, 6, 7, 8} → {1, 2, 3, 4} with*g*= {(5, 4), (6, 3), (7, 4), (8, 2)}(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} with

*h*= {(2, 7), (3, 9), (4, 11), (5, 13)} - Q:-
Let

*f*: R → R be defined as f(x) = 3x. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:-
Let f : R → R be defined as f(x) = x

^{4}. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Find the principal value of \begin{align} tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}
- Q:- Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1, T2 and T3 are related?
- Q:- Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation. - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.

Copyright © 2020 saralstudy.com. All Rights Reserved.