A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
The area of a circle (A) with radius (r) is given by A = πr2.
Therefore, the rate of change of area (A) with respect to time (t) is given by,
\begin{align} \frac{dA}{dt}=\frac{d}{dt}(\pi r^2)=\frac{d}{dt}(\pi r^2).\frac{dr}{dt}=2\pi r\frac{dr}{dt}\;\;\;[By\; Chain \;Rule]\end{align}
It is given that
\begin{align} \frac{dr}{dt}=5\; cm/s\end{align}
Thus, when r = 8 cm,
\begin{align} \frac{dA}{dt}=2\pi(8)(5)=80\pi\end{align}
Hence, when the radius of the circular wave is 8 cm, the enclosed area is increasing at the rate of 80π cm2/s.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
If f(x) = , show that fof(x) = x, for all x ≠ 2/3. What is the inverse of f ?
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.