Welcome to the NCERT Solutions for Class 12th Mathematics - Chapter Relations and Functions. This page offers a step-by-step solution to the specific question from Exercise 1, Question 10: **given an example of a relation which is i symme...**.

Question 10

## Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.

Answer

**(i)** Let *A* = {5, 6, 7}.

Define a relation R on* A* as R = {(5, 6), (6, 5)}.

Relation R is not reflexive as (5, 5), (6, 6), (7, 7) ∉ R.

Now, as (5, 6) ∈ R and also (6, 5) ∈ R, R is symmetric.

=> (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R

∴R is not transitive.

Hence, relation R is symmetric but not reflexive or transitive.

**(ii) **Consider a relation R in **R **defined as:

R = {(*a*, *b*): *a* < *b*}

For any *a *∈ R, we have (*a*, *a*) ∉ R since *a* cannot be strictly less than *a* itself. In fact, *a* = *a*.

**∴ **R is not reflexive.

Now,

(1, 2) ∈ R (as 1 < 2)

But, 2 is not less than 1.

**∴ **(2, 1) ∉ R

**∴ **R is not symmetric.

Now, let (*a*, *b*), (*b*, *c*) ∈ R.

⇒ *a* < *b* and *b* < *c*

⇒ *a* < *c*

⇒ (*a*, *c*) ∈ R

**∴ **R is transitive.

Hence, relation R is transitive but not reflexive and symmetric.

**(iii)** Let *A* = {4, 6, 8}.

Define a relation R on A as:

*A* = {(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)}

Relation R is reflexive since for every *a* ∈ *A*, (*a*, *a*) ∈R i.e., (4, 4), (6, 6), (8, 8)} ∈ R.

Relation R is symmetric since (*a*, *b*) ∈ R ⇒ (*b*, *a*) ∈ R for all *a*, *b* ∈ R.

Relation R is not transitive since (4, 6), (6, 8) ∈ R, but (4, 8) ∉ R.

Hence, relation R is reflexive and symmetric but not transitive.

**(iv)** Define a relation R in **R** as:

R = {*a*, *b*): *a*^{3} ≥ *b*^{3}}

Clearly (*a*, *a*) ∈ R as *a*^{3} = *a*^{3}.

**∴ **R is reflexive.

Now,

(2, 1) ∈ R (as 2^{3} ≥ 1^{3})

But,

(1, 2) ∉ R (as 1^{3} < 2^{3})

**∴** R is not symmetric.

Now,

Let (*a*, *b*), (*b*, *c*) ∈ R.

⇒ *a*^{3} ≥ *b*^{3} and *b*^{3} ≥ *c*^{3}

⇒ *a*^{3} ≥ *c*^{3}

⇒ (*a*, *c*) ∈ R

**∴ **R is transitive.

Hence, relation R is reflexive and transitive but not symmetric.

**(v) ** Let *A* = {−5, −6}.

Define a relation R on *A* as:

R = {(−5, −6), (−6, −5), (−5, −5)}

Relation R is not reflexive as (−6, −6) ∉ R.

Relation R is symmetric as (−5, −6) ∈ R and (−6, −5}∈R.

It is seen that (−5, −6), (−6, −5) ∈ R. Also, (−5, −5) ∈ R.

**∴ **The relation R is transitive.

Hence, relation R is symmetric and transitive but not reflexive.

- Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive. - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:- Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
- Q:-
Let

*f*: R → R be defined as f(x) = 3x. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto.

- Q:-
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.

- Q:-
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}

- Q:-
Represent graphically a displacement of 40 km, 30° east of north.

- Q:-
If a line makes angles 90°, 135°, 45° with

*x*,*y*and*z*-axes respectively, find its direction cosines. - Q:-
Maximise Z = 3

*x*+ 4*y*Subject to the constraints:

*x*+*y*≤ 4,*x*≥ 0,*y*≥ 0 - Q:-
Find the area of the region bounded by the curve

*y*^{2}=*x*and the lines*x*= 1,*x*= 4 and the*x*-axis. - Q:- Evaluate the determinants

\begin{vmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{-5} & \mathbf{-1} \end{vmatrix} - Q:- Find the rate of change of the area of a circle with respect to its radius r when

(a) r = 3 cm

(b) r = 4 cm - Q:-
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).

- Q:- Integrals sin 2x

- Q:-
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.

- Q:-
Maximise Z = 3

*x*+ 4*y*Subject to the constraints:

*x*+*y*≤ 4,*x*≥ 0,*y*≥ 0 - Q:-
Determine order and degree(if defined) of differential equation

\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}

- Q:-
A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.

- Q:-
The order of the differential equation

\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}

is

**(A)**2**(B)**1**(C)**0**(D)**not defined - Q:-
Determine order and degree(if defined) of differential y

^{'}+ y =e^{x} - Q:- Find the principal value of \begin{align} cosec^{-1}\left({-\sqrt2}\right)\end{align}
- Q:- \begin{align} \int \left(\sqrt{x} - \frac {1}{\sqrt{x}}\right)^2 .dx\end{align}
- Q:- If A=\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\), then show that |3A| = 27|A|.
- Q:- Find the principal value of \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right)\end{align}

callboy
2019-08-23 02:10:20

in part v set is trans. then (-6,-5) & (-5,-6) both are in relation

angshika
2019-08-21 09:28:45

Thanks for the help

Kajol
2018-12-23 12:01:37

In v. If -6,-6 belongs to R then it will be reflexive (a,a) belongs to R therefore v answer is correct

Sunny
2018-07-15 21:04:10

Try to improve much more

Sachin
2015-04-17 13:33:47

I think, it is correct because (-6,-6) does not belongs to relation set R. Properties of Relation is A realtion R on set A is reflexive if aRa for all a belongs to A i.e. is (a,a) belongs to R for all a belongs to R => each element a of A is related to itself. Ex: Let A = {a,b} and R = {(a,a),(a,b),(b,a)} then R is reflexive as aRa belongs to R but it is not reflexive for pair (b,b) does not belongs to R.

imer
2015-04-16 11:55:15

plz check part v it does not seems correct as -6,-6 doesnot belongs to R

- All Chapters Of Class 12 Mathematics

- All Subjects Of Class 12