In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
(i) f: R → R is defined as f(x) = 3 - 4x.
.
∴ f is one-one.
For any real number (y) in R, there existsin R such that
∴f is onto.
Hence, f is bijective.
(ii) f: R → R is defined as
.
.
∴does not imply that x1 = x2
For instance,
∴ f is not one-one.
Consider an element - 2 in co-domain R.
It is seen thatis positive for all x ∈ R.
Thus, there does not exist any x in domain R such that f(x) = - 2.
∴ f is not onto.
Hence, f is neither one-one nor onto.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
Determine order and degree(if defined) of differential y' + y =ex
If f: R → R be given by f(x) = , then fof(x) is
(A)
(B) x3
(C) x
(D) (3 – x3).
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Represent graphically a displacement of 40 km, 30° east of north.