Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
It is seen that.
∴f( - 1) = f(1), but - 1 ≠ 1.
∴ f is not one-one.
Now, consider - 1 ∈ R.
It is known that f(x) = |x| is always non-negative. Thus, there does not exist any element x in domain R such that f(x) = |x| = - 1.
∴ f is not onto.
Hence, the modulus function is neither one-one nor onto.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Let f : R → R be defined as f(x) = x4. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
Let A = R – {3} and B = R – {1}. Consider the function f : A → B defined by
Determine order and degree(if defined) of differential equation y' + 5y = 0