R = {(a, b); a ≤ b}
Clearly (a, a) ∈ R as a = a.
∴R is reflexive.
Now,
(2, 4) ∈ R (as 2 < 4)
But, (4, 2) ∉ R as 4 is greater than 2.
∴ R is not symmetric.
Now, let (a, b), (b, c) ∈ R.
Then,
a ≤ b and b ≤ c
⇒ a ≤ c
⇒ (a, c) ∈ R
∴R is transitive.
Hence,R is reflexive and transitive but not symmetric.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.
Consider f : {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f –1 and show that (f –1)–1 = f.
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?