Question 24

Define electric flux. Is it a scalar or a vector quantity? A point charge q is at a distance d/2 directly above the centre of a square of side ‘d’, as shown in the figure. Use Gauss’s law to obtain the expression for the electric flux through the square.

(b) If the point charge is now moved to a distance ‘d’ from the centre of the square and the side of the square is doubled, explain how the electric flux be affected.

Answer

Experts are working on it...

- Q:-
An infinite line charge produces a field of 9 × 10

^{4}N/C at a distance of 2 cm. Calculate the linear charge density. - Q:-
A polythene piece rubbed with wool is found to have a negative charge of 3 × 10

^{−7}C.(a) Estimate the number of electrons transferred (from which to which?)

(b) Is there a transfer of mass from wool to polythene?

- Q:-
What is the force between two small charged spheres having charges of 2 x 10

^{-7}C and 3 x 10^{-7}C placed 30 cm apart in air? - Q:- ">
A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in Fig. 1.34. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.)

- Q:-
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10

^{-12}F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? - Q:-
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

- Q:-
A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5 × 10

^{3}N/C and points radially inward, what is the net charge on the sphere? - Q:-
Two charges 5 x 10

^{-8}C and -3 x 10^{-8}C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero. - Q:- The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.
(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

">The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

(a) What is the distance between the two spheres?

(b) What is the force on the second sphere due to the first?

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge?

- Q:-
A system has two charges q

_{A}= 2.5 × 10^{−7}C and q_{B}= −2.5 × 10^{−7}C located at points A: (0, 0, − 15 cm) and B: (0, 0, + 15 cm), respectively. What are the total charge and electric dipole moment of the system? - Q:- Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.">
Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.

- Q:-
A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?

- Q:-
Two point charges q

_{A}= 3 μC and q_{B}= −3 μC are located 20 cm apart in vacuum.(a) What is the electric field at the midpoint O of the line AB joining the two charges?

(b) If a negative test charge of magnitude 1.5 × 10

^{−9}C is placed at this point, what is the force experienced by the test charge? - Q:-
that the capacitance of a spherical capacitor is given by

where

">*r*1 and*r*2 are the radii of outer and inner spheres, respectively.A spherical capacitor consists of two concentric spherical conductors, held in position by suitable insulating supports (Figure). Show

that the capacitance of a spherical capacitor is given by

where

*r*1 and*r*2 are the radii of outer and inner spheres, respectively. - Q:- The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery?
- Q:-
(a) In a metre bridge [Fig. 3.27], the balance point is found to be at 39.5 cm from the end

*A*, when the resistor*Y*is of 12.5**Ω**. Determine the resistance of*X*. Why are the connections between resistors in a Wheatstone or meter bridge made of thick copper strips?(b) Determine the balance point of the bridge above if

*X*and*Y*are interchanged.(c) What happens if the galvanometer and cell are interchanged at the balance point of the bridge? Would the galvanometer show any current?

- Q:- A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom makes a transition from the upper level to the lower level?">
A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom makes a transition from the upper level to the lower level?

- Q:-
Four point charges q

_{A}= 2 μC, q_{B}= −5 μC, q_{C}= 2 μC, and qD = −5 μC are located at the corners of a square ABCD of side 10 cm. What is the force on a charge of 1 μC placed at the centre of the square? - Q:-
At room temperature (27.0 °C) the resistance of a heating element is 100 Ω. What is the temperature of the element if the resistance is found to be 117 Ω, given that the temperature coefficient of the material of the resistor is 1.70 x 10

^{-4}°C^{-1}

Copyright © 2020 saralstudy.com. All Rights Reserved.