Welcome to the Chapter - , Class 11 Physics - NCERT Solutions page. Here, we provide detailed question answers for Chapter - .The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics and excel in their exams. By going through these question answers, you can strengthen your foundation and improve your performance in Class 11 Physics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
State the number of significant figures in the following:
(a) 0.007 m2
(b) 2.64 x 1024 kg
(c) 0.2370 g cm-3
(d) 6.320 J
(e) 6.032 N m-2
(f) 0.0006032 m2
Fill in the blanks by suitable conversion of units:
(a) 1 kg m2s–2= ....g cm2 s–2
(b) 1 m =..... ly
(c) 3.0 m s–2=.... km h–2
(d) G = 6.67 × 10–11 N m2 (kg)–2=.... (cm)3s–2 g–1.
A physical quantity P is related to four observables a, b, c and d as follows :
The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%, respectively. What is the percentage error in the quantity P ? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result ?
Rain is falling vertically with a speed of 30 m s–1. A woman rides a bicycle with a speed of 10 m s–1 in the north to south direction. What is the direction in which she should hold her umbrella?
The mass of a box measured by a grocer's balance is 2.300 kg. Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is
(a) the total mass of the box,
(b) the difference in the masses of the pieces to correct significant figures?
On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.
What amount of heat must be supplied to 2.0 x 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol-1 K-1.)
A transverse harmonic wave on a string is described by
y(x,t) = 3.0 sin [36t + 0.018x + π /4]
Where x and y are in cm and t in s. The positive direction of x is from left to right.
(a) Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation?
(b) What are its amplitude and frequency?
(c) What is the initial phase at the origin?
(d) What is the least distance between two successive crests in the wave?
The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m, and 2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.
( i ) The time period of a body having simple harmonic motion depends on the mass m of the body and the force constant k:
T =2π √m/k
A simple pendulum exhibits simple harmonic motion. Then why does the time period of a pendulum not depend upon its mass?
( ii ) For small angle oscillations, a simple pendulum exhibits simple harmonic motion ( more or less). For larger angles of oscillation, detailed analysis show that T is greater than 2π√ l/g. Explain.
( iii ) A boy with a wristwatch on his hand jumps from a helicopter. Will the wrist watch give the correct time during free fall?
( iv ) Find the frequency of oscillation of a simple pendulum that is free falling from a tall bridge.
A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.
A LASER is a source of very intense, monochromatic, and unidirectional beam of light. These properties of a laser light can be exploited to measure long distances. The distance of the Moon from the Earth has been already determined very precisely using a laser as a source of light. A laser light beamed at the Moon takes 2.56 s to return after reflection at the Moon's surface. How much is the radius of the lunar orbit around the Earth?
A man walking briskly in rain with speed v must slant his umbrella forward making an angle θ with the vertical. A student derives the following relation between θ and v : tan θ = v and checks that the relation has a correct limit: as v → 0, θ →0, as expected. (We are assuming there is no strong wind and that the rain falls vertically for a stationary man). Do you think this relation can be correct ? If not, guess the correct relation.
Just as precise measurements are necessary in science, it is equally important to be able to make rough estimates of quantities using rudimentary ideas and common observations. Think of ways by which you can estimate the following (where an estimate is difficult to obtain, try to get an upper bound on the quantity):
(a) the total mass of rain-bearing clouds over India during the Monsoon
(b) the mass of an elephant
(c) the wind speed during a storm
(d) the number of strands of hair on your head
(e) the number of air molecules in your classroom.
A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s-1. The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air.
(i) What is the frequency of the whistle for a platform observer when the train
(a) approaches the platform with a speed of 10 m s-1,
(b) recedes from the platform with a speed of 10 m s-1?
(ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s-1.
Attempt to formulate your ‘moral’ views on the practice of science. Imagine yourself stumbling upon a discovery, which has great academic interest but is certain to have nothing but dangerous consequences for the human society. How, if at all, will you resolve your dilemma?
Choose the correct alternative:
(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potential energy.
(b) The energy required to launch an orbiting satellite out of earth’s gravitational influence is more/less than the energy required to project a stationary object at the same height (as the satellite) out of earth’s influence.