Write the resonance structures for SO3, NO2 and .
Resonance is defined as the phenomenon as a result of which a molecule can be expressed in different forms, none of which can explain all the properties of the molecules. The actual structure of the molecule is called resonance hybrid.
The resonating structures must have same position of the atoms, they must have same number of paired & unpaired electrons, they should have nearlt same energy. The resonance structures are:
(a) SO3:
(b) NO2
(c)
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Describe the change in hybridisation (if any) of the Al atom in the following reaction.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) C6H5OH
(b) C6H5NO2
(c) CH3CH=CHCHO
(d) C6H5–CHO
(e) C6 H5 - C+H2
(f) CH3CH = CHC+H2
Consider the reactions :
2 S2O2– 3 (aq) + I2(s) → S4 O2– 6(aq) + 2I – (aq)
S2O2– 3(aq) + 2Br2(l) + 5 H2O(l) → 2SO2–4(aq) + 4Br–(aq) + 10H+(aq)
Why does the same reductant, thiosulphate react differently with iodine and bromine ?
Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?
One of the reaction that takes place in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO2.
FeO (s) + CO (g) ↔ Fe (s) + CO2 (g); Kp = 0.265 atm at 1050K
What are the equilibrium partial pressures of CO and CO2 at 1050 K if the initial partial pressures are: pCO= 1.4 atm and Pco2 = 0.80 atm
Write structures of all the alkenes which on hydrogenation give 2-methylbutane.
An atom of an element contains 29 electrons and 35 neutrons.
Deduce (i) the number of protons and (ii) the electronic configuration of the element.
What sorts of informations can you draw from the following reaction ?
(CN)2(g) + 2OH-(aq) → CN-(aq) + CNO-(aq) + H2O(l)
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
In Rutherford’s experiment, generally the thin foil of heavy atoms, like gold, platinum etc. have been used to be bombarded by the α-particles. If the thin foil of light atoms like aluminium etc. is used, what difference would be observed from the above results?
An electron is in one of the 3d orbitals. Give the possible values of n, l and ml for this electron.
Really, the way of telling the answer is very nice
Nice
Very useful and nice answer
Very disscasting website Very poor results I am not satisfied
this is really good