Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
(d) 2K(s) + F2(g) → 2K+F– (s)
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
Let us write the oxidation number of each element involved in the given reaction as:
+2 -2 0 0 +1 -2
Cu O(s) + H2(g) → Cu(s) + H2 O(g)
Here, the oxidation number of Cu decreases from +2 in CuO to 0 in Cu i.e., CuO is reduced to Cu. Also, the oxidation number of H increases from 0 in H2 to +1 in H2O i.e., H2 is oxidized to H2O. Hence, this reaction is a redox reaction.
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
Let us write the oxidation number of each element involved in the given reaction as:
+3 -2 +2 -2 0 +4 -2
Fe2 O3(s) + 3C O(g) → 2Fe(s) + 3C O2(g)
Here, the oxidation number of Fe decreases from +3 in Fe2O3 to 0 in Fe i.e., Fe2O3 is reduced to Fe. On the other hand, the oxidation number of C increases from +2 in CO to +4 in CO2 i.e., CO is oxidized to CO2. Hence, the given reaction is a redox reaction.
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
Let us write the oxidation number of each element involved in the given reaction as:
+3 -1 +1 +3 -1 -3 +1 +1 -1 +3 -1
4B Cl3(g) + 3 Li Al H4(s) → 2B2 H6(g) + 3Li Cl(s) + 3 Al Cl3 (s)
In this reaction, the oxidation number of B decreases from +3 in BCl3 to –3 in B2H6. i.e., BCl3 is reduced to B2H6. Also, the oxidation number of H increases from –1 in LiAlH4 to +1 in B2H6 i.e., LiAlH4 is oxidized to B2H6. Hence, the given reaction is a redox reaction.
(d) 2K(s) + F2(g) → 2K+F– (s)
Let us write the oxidation number of each element involved in the given reaction as:
0 0 +1 -1
2K(s) + F2(g) → 2K+ F– (s)
In this reaction, the oxidation number of K increases from 0 in K to +1 in KF i.e., K is oxidized to KF. On the other hand, the oxidation number of F decreases from 0 in F2 to – 1 in KF i.e., F2 is reduced to KF.
Hence, the above reaction is a redox reaction.
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
Let us write the oxidation number of each element involved in the given reaction as:
-3 +1 0 +2 -2 +1 -2
4 N H3(g) + 5 O2(g) → 4N O(g) + 6H2 O(g)
Here, the oxidation number of N increases from –3 in NH3 to +2 in NO. On the other hand, the oxidation number of O2 decreases from 0 in O2 to –2 in NO and H2O i.e., O2 is reduced. Hence, the given reaction is a redox reaction.
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction,
CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?
Density of a gas is found to be 5.46 g/dm3 at 27 °C at 2 bar pressure. What will be its density at STP?
A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
Calculate the mass of sodium acetate (CH3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol–1
What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a 9 dm3 flask at 27 °C ?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
An alkene 'A' on ozonolysis gives a mixture of ethanal and pentan-3-one. Write structure and IUPAC name of 'A'.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:
2BrCl (g) ↔ Br2 (g) + Cl2 (g) for which Kc= 32 at 500 K.
If initially pure BrCl is present at a concentration of 3.3 × 10–3 mol L–1, what is its molar concentration in the mixture at equilibrium?
Enthalpies of formation of CO(g), CO2(g), N2O(g) and N2O4(g) are –110, – 393, 81 and 9.7 kJ mol–1 respectively. Find the value of ΔrH for the reaction:
N2O4(g) + 3CO(g) → N2O(g) + 3CO2(g)
Round up the following upto three significant figures:
(i) 34.216
(ii) 10.4107
(iii) 0.04597
(iv) 2808
Fluorine reacts with ice and results in the change:
H2O(s) + F2(g) → HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Arrange the following set of compounds in order of their decreasing relative reactivity with an electrophile, E+
(a) Chlorobenzene, 2,4-dinitrochlorobenzene, p-nitrochlorobenzene
(b) Toluene, p-H3C-C6H4-NO2, p-O2N-C6H4-NO2.
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Thanks ...it's better way to check nd get the answers of NCERT