Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
Step 1:
The two half reactions involved in the given reaction are:
-1 0
Oxidation half reaction: l (aq) → l2(s)
+7 +4
Reduction half reaction: Mn O-4(aq) → MnO2(aq)
Step 2:
Balancing I in the oxidation half reaction, we have:
2l-(aq) → l2(s)
Now, to balance the charge, we add 2 e- to the RHS of the reaction.
2l-(aq) → l2(s) + 2e-
Step 3 :
In the reduction half reaction, the oxidation state of Mn has reduced from +7 to +4. Thus, 3 electrons are added to the LHS of the reaction.
MnO-4(aq) + 3e- →MnO2(aq)
Now, to balance the charge, we add 4 OH- ions to the RHS of the reaction as the reaction is taking place in a basic medium.
MnO-4(aq) + 3e- →MnO2(aq) + 4OH-
Step 4:
In this equation, there are 6 O atoms on the RHS and 4 O atoms on the LHS. Therefore, two water molecules are added to the LHS.
MnO-4(aq) + 2H2O + 3e- →MnO2(aq) + 4OH-
Step 5:
Equalising the number of electrons by multiplying the oxidation half reaction by 3 and the reduction half reaction by 2, we have:
6l-(aq) → 3l2(s) + 2e-
2MnO-4(aq) + 4H2O + 6e- → 2MnO2(s) + 8OH-(aq)
Step 6:
Adding the two half reactions, we have the net balanced redox reaction as:
6l-(aq) + 2MnO-4(aq) + 4H2O(l) → 3l2(s) + 2MnO2(s) + 8OH-(aq)
(b) Following the steps as in part (a), we have the oxidation half reaction as:
SO2(g) + 2H2O(l) → HSO-4(aq) + 3H+(aq) + 2e-(aq)
And the reduction half reaction as:
MnO-4(aq) + 8H+(aq) + 5e- → Mn2+(aq) + 4H2O(l)
Multiplying the oxidation half reaction by 5 and the reduction half reaction by 2, and then by adding them, we have the net balanced redox reaction as:
2MnO-4(aq) + 5SO2(g) + 2H2O(l) + H+(aq) → Mn2+(aq) + HSO-4(aq)
(c) Following the steps as in part (a), we have the oxidation half reaction as:
Fe2+(aq) → Fe3+(aq) + e-
And the reduction half reaction as:
H2O2(aq) + 2H+(aq) + 2e- → 2H2O(l)
Multiplying the oxidation half reaction by 2 and then adding it to the reduction half reaction, we have the net balanced redox reaction as:
H2O2(aq) + 2Fe2+(aq) + 2H+(aq) → 2Fe3+(aq) + 2H2O(l)
(d) Following the steps as in part (a), we have the oxidation half reaction as:
SO2(g) + 2H2O(l) → SO2-4(aq) + 4H+ (aq) + 2e-
And the reduction half reaction as:
Cr2O2-7(aq) + 14H+(aq) + 6e- → 2Cr3+(aq) + 3SO2-4(aq) + H2O(l)
Multiplying the oxidation half reaction by 3 and then adding it to the reduction half reaction, we have the net balanced redox reaction as:
Cr2O2-7(aq) + 3SO2(g) + 2H+(aq) → 2Cr3+(aq) + 3SO2-4(aq) + H2O(l)
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
In a process, 701 J of heat is absorbed by a system and 394 J ofwork is done by the system. What is the change in internal energy for the process?
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
At 0°C, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Density of a gas is found to be 5.46 g/dm3 at 27 °C at 2 bar pressure. What will be its density at STP?
Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
Density of a gas is found to be 5.46 g/dm3 at 27 °C at 2 bar pressure. What will be its density at STP?
Considering the elements B, Al, Mg, and K, the correct order of their metallic character is:
(a) B > Al > Mg > K
(b) Al > Mg > B > K
(c) Mg > Al > K > B
(d) K > Mg > Al > B
How can saline hydrides remove traces of water from organic compounds?
Write balanced equations for:
(i) BF3 + LiH →
(ii) B2H6 + H2O →
(iii) NaH + B2H6 →
(iv) H3BO3
(v) Al + NaOH →
(vi) B2H6 + NH3 →
Assign the position of the element having outer electronic configuration
(i) ns2 np4 for n = 3 (ii) (n - 1)d2 ns2 for n = 4, and (iii) (n - 2) f7 (n - 1)d1 ns2 for n = 6, in the periodic table.
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
At 450K, Kp= 2.0 × 1010/bar for the given reaction at equilibrium.
2SO2(g) + O2(g) ↔ 2SO3 (g)
What is Kc at this temperature ?
What is meant by 'demineralised' water and how can it be obtained?
Give one method for industrial preparation and one for laboratory preparation of CO and CO2 each.
A mixture of dihydrogen and dioxygen at one bar pressure contains 20% by weight of dihydrogen. Calculate the partial pressure of dihydrogen.
It is amazing and very helpful for everyone who do not get buy the books